OpenNMS qosdaemon Documentation

This document describes the qosdaemon which implements the OpenNMS OSS/J Qos Interface and
has been contributed to OpenNMS by the University of Southampton.

Author: Craig Gallen
Version:1.4
Date: 29-11-06

Table of Contents

I INtroduction tO OSS/T.....uii ettt ettt e sttt e et e e st e e eabbeeeeanes 2
2 DesiZN PhIlOSOPRIYceiiiiiiiiiiie ettt ettt e et e et e e e beeesaree e 3
3 OSS/J CONFOTMANCE.ceiuiiiiiiiiie ittt ettt ettt e et e et e e sttt e e e bbb e e s ateeesabbeeeeabbeeseanees 4
4 PTOAUCTION USE...ceiiiuiiiiiieeiiiiiieeeeiiiteeeseitt e e e eett e e e s ettt e e essasaeeeeesasaseeeesensstseeeeananssseessennnsseeeesennssnees 4
I 55 o) oS UPRRRP 5
6 Functionality ProvIid@d..........cooocuiiiiiiiiieiiee ettt e et e e et e e e bae e eebeeeesaaeessaaaennns 6
6.1 QOSD dACINION.cuviiiiiiiiei ettt e e e e e e e ee et e e e e e e e e e e e e estaareseaaaeeseeanssssraasaaaaaeeanns 6
6.1.1 Native OpenNMS provided INteTface...........ccvieeriiiiiiiiiieeiiieecie e 6

6.1.2 Separate J2EE server provided interface.............coooeeiiiiiiiiiiiiiiiiiiie e 7

0.2 QOSDIIX ..ttt ettt e e —— e e e e et et e e e e ————————ataeaeeeaeean———————aaaaeeeeeaanan 9

7 OpenNMS gqosdaemon Package DesCriptioncoceerieriiiniiiniiiiiienieeeesee et 10
7.1 FUNCHONAILY OVEIVIEW.....eiiiiiieeiiiieeeiieeeiee et eeeiteeesteeesibeesssteessbeeesnnsaeesnsseeesnsaeesnsseeennns 10
7.2 PaCKAZE OVETVIEW......ueiiiiuiiieiiiieeeiieeeiiee et e eeteeesteeesstaeeessabeessssteesansaaesssaeeessaesessaeesnsseeennes 10
T.2.1 OSSDI0. ...ttt ettt ettt et 10

T.2.2 QOSD DaACIMION......ccceiiiiiiiiiiiiiiiiieeeeeeeeeeeee e e e e e e e e e e e e eeaaeaeeaaaaeeeee e e e ———— 11

7.2.3 QOSDIX DEAIMOMN......ccceiiiiiiiiiiitiieiiee e eeeeciree et eeeeeeeeeerreeeeeeeeeeeeeetarareeeeeeeeeeeneearareeeeens 14

8 Appendix 1: Example Configuration of the OSS/J interface.........cccoevuvveeviiieiiiiiieeniieeeiee e, 17
9 Appendix 2: Notes on setting up qosdaemon on Fedora 4..........cccccceeveviiiiniiiiiniiiiniiceeieeeeeen 23
9.1 Installing OpenNMS 1.3.2-SNAPSHOTccooiiiiieeie et 23

9.2 Running the qoSd appliCatioN..........cooviiiiiiiiiiiiie ettt 25

1 Introduction to OSS/J

Operational Support Systems through Java (OSS/J) is an initiative initially championed by Sun
Microsystems but now incorporated into the Telemanagement Forum Prospero program. (see
www.ossj.org and www.tmforum.org). OSS/J provides a means to implement the TMForum New

Generation Operational Support Systems (NGOSS) framework in Java/J2EE environments.

The OSS/J program has developed specifications for a number of Java API's to ease the integration
of Telecoms Operational Support Systems. The API's are collaboratively developed using the Java
Community process and released as both Java Interface specifications and supporting XSD
definitions. Fully implemented OSS/J interfaces support both Java Value Type (JVT) interactions
using interfaces defined using an ejb facade pattern and Message Orientated Middleware (MOM)
style interfaces using XML messages transported using JMS. Going forwards new API's will be
defined with profiles for Web Service (WSDL) style interactions and the Web Services profile will
be retrospectively applied to existing interfaces over time.

The earliest and, to date, the most widely deployed of the OSS/J API's are the Quality of Service
(Qos) and Trouble Ticket (TT) interfaces. Subsequent to the initial definition of these interfaces,
OSS/J finalised a Common Business Entities (CBE) model in order to provide a more consistent
data model which was aligned with the TMForum SID. The newer OSS/J API's closely reference
the CBE but the earlier TT and Qos interfaces are not 100% aligned with the current CBE. OSS/J
are in the process specifying an aligned Trouble Ticket interface and separate Fault Management
and Performance Management interfaces which will supersede the Qos api. However at the time
this project started, the new specifications had not been released and it was preferred to work with
an already finalised specification However the new Fault API is substantially similar to the Qos API
and future support of the Fault API should be possible without a major re-write of the interface.. In
our design we have chosen not to implement Qos interface functionality which we know will not be
supported by the new Fault interface. (In particular we have avoided using the XmlSerialiser
methods which have been depreciated in OSS/J).

The OSS/] Quality of Service (Qos) specification defines API's for accessing Performance
Management (PM) and Fault Management (FM) data on a Network management System (NMS). It
also defines a set of events which the NMS can publish to a Topic using a JMS provider to inform
clients of changes in state. The PM and FM sides of the interface can be implemented separately
The FM interface exposes an alarm list formatted according to the ITU-T X.733 standard and also
generates events as JMS messages corresponding changes in the alarm list (for example
NewAlarmEvent, ClearedAlarmEvent, AlarmAcknowledgeEvent and AlarmChangedEvent).
Clients of the Qos interface can register with the JMS provider to receive only alarms
corresponding to certain filter criteria such as PerceivedSeverity or ManagedObjectType or
Instance. This allows for a truly distributed system where clients only register to receive messages
relevant to their purpose. It is possible for Clients to maintain a local copy of the state of an alarm
list using events alone - which avoids the performance hit and potential latency involved in
regularly querying the alarm list. The query interface is required however if the client needs to re-

http://www.ossj.org/
http://www.tmforum.org/

synchronise it's view of the alarm list, say when it is starting up for the first time.

2 Design Philosophy

The qosdaemon project was initiated with a view to make the OpenNMS project more attractive for
Telecoms applications where integration to other OSS systems was an important consideration. As
a research project, we also wanted to offer a platform where OSS/J could be demonstrated as
providing useful functionality and which would provide a vehicle for the wider community to
implement and experiment with NGOSS type solutions in an Open Source environment.

The JCP process used by OSS/J requires that the specifications be released with reference
implementations and Technology Compatibility Kits to test other implementation's against the
specification. Thus the design goals of the OSS/J reference implementations are to provide
complete and accurate implementations of the OSS/J specification but not necessarily to provide re-
usable libraries or end user functionality. Also once complete, the OSS/J Reference
Implementations are not necessarily subject to ongoing enhancement or maintenance by the original
developers.

By way of contrast, the design goals of this project have been to utilise the OSS/J specifications to
realise useful functionality in order to allow practical use cases to be demonstrated. Thus the focus
has not been on accuracy or completeness of specification implementation but on the realisation of
a viable end-user use case using OSS/J functionality within a community sustained open source
project. It is very important to realise that two key mantras of successful open source projects are;
'Release early and release often.' and 'Make it easy for potential users or contributors to assess and
begin using your offering'.

Therefore the design philosophy of the project has been; Firstly, to choose a use case for OpenNMS
which would leverage OSS/J and would deliver immediate value to OpenNMS community.
Secondly, to contribute the solution in such a way as it is fully sustainable as a mainstream
contribution to the OpenNMS project even in it's initial release. Thirdly, to only implement enough
OSS/J functionality as was necessary to support the use case. And finally, to structure the design in
such a way as it will be possible for future contributions to go back and complete or address any
non-conformances in the design of the interface.

A key aspect of the design has been the separate packaging of libraries (OSSbeans) which could be
generally useful for OSS/J implementations from the OpenNMS specific interface code
(qosdeamon). The OSSbeans libraries are in a separate Apache 2 licensed project on Source forge.
The qosdaemon is fully integrated into the OpenNMS code tree and uses maven to incorporate the
OSSbeans dependencies into the OpenNMS build. By this means it will be possible for the
development of the OpenNMS and the OSSbeans projects to proceed asynchronously and it will
also be possible for other projects to leverage OSSbeans. However the dependence of OpenNMS
Qos interface on the OSSbeans libraries should ensure that there is sufficient community interest to
sustain and carry forwards the OSSbeans project regardless of other users.

A key advantage of this design approach has been that the discipline of having to integrate into a
real application (OpenNMS) has made OSSbeans more useful as a library. Throughout the design
we have gone through multiple re factoring steps to partition the functionality so that it can easily
be picked up by an external application. A second advantage arises from the fact that designing
OSSbeans 2.1.0 as an initial offering has been something of an education. It is possible to see
numerous areas where the design could be improved. Thus given sufficient interest, future release
of OSSbeans will be able to learn the lessons of the first implementation in order to provide a more
generally useful library. In addition the issues around OSS/J compliance are confined to the
OSSbeans library which can have it's own roadmap towards compliance as contributions fill in the

gaps.

3 O0SS/J Conformance

This project provides partial implementation of the OSS/J QoS interface for OpenNMS. It is
offered as an illustrative and training tool to explain OSS/J and to gauge interest from the
OpenNMS community in taking the project forwards.

This project leverage's the OSSbeans project which provides the core classes for the OSS/J
implementation. OSSbeans are a separate project hosted as part of the University of Southampton
OpenOSS initiative at http://sourceforge.net/projects/openoss

The interface is based upon the OSS/J QoS specification available at www.ossj.org. The basic
principles and design patterns of the the specification are implemented however not all of the
mandatory functionality is complete and the interface has not been tested against the OSS/J SDK.

Where functionality is provided it does so using classes implementing interfaces conforming to the
javax.oss interface tree and the XML messaging uses messages conforming to the OSS/J Qos
XSD's. This provides a firm basis for moving towards full OSS/J compliance in future releases.

Some work was done previously by the Budapest University of Business and Technology (BUTE)
to demonstrate that the PM interface could be implemented for OpenNMS. This work has not been
incorporated into the present Qos interface but could be taken forwards later. The present Qos
interface only implements FM functionality. (Note however that it is still possible for OpenNMS
performance threshold crossing events to be converted into OSS/J faults reported by OpenNMS)

4 Production Use

The interface should be considered experimental and is not optimised for high load environments.
Although included with OpenNMS, it can be completely disabled and will not then interfere with
other OpenNMS components. However even in it's present form the interface may still be useful for
some production solutions. Envisaged uses include;

* Integration of OpenNMS alarms with other Operational Support Systems using J2EE or JIMS

* Monitoring important alarms from remote OpenNMS systems - potentially on a customer's site.
(Note that to circumnavigate firewalls JbossMQ can be configured to send JMS messages using
HTTP - although this has not been tested.)

As an example, the interface has been successfully used to integrate OpenNMS with an Alarm /
Topology correlation engine from Sidonis. www.sidonis.com as part of a proof of concept for
managing a Digital TV network

5 Licence
The qosdaemon project builds an OSS/J interface for OpenNMS. It is released with OpenNMS
under the GPL licence and uses code contributed to OpenNMS by the University of Southampton.

OSSbeans (http://sourceforge.net/projects/openoss) are released under the Apache-2 licence by the
University of Southampton.

6 Functionality Provided

The current release of the qosdaemon module leverage's OSSbeans Release 2.1.0 and provides the
following functionality. The module provides two daemons which can be used independently or
together. The daemons share a data access layer, OssDao which is a data access object which maps
the OSS/J Qos interface onto OpenNMS's internal alarm list exposed by the OnmsDao.

The qosd daemon publishes the internal OpenNMS alarm list as an OSS/J alarm list. The qosdrx
daemon allows an OpenNMS system to connect using the OSS/J interface to remote OpenNMS
systems running qosd. This allows a 'master' OpenNMS to monitor the state of the alarms lists in
'slave’ openNMS systems. The present implementation is almost exclusively JMS event driven with
limited alarm list query functionality provided as a J2EE option on qosd.

The implementation leverages JbossMQ as the JMS provider. In theory other JIMS providers could
be used but these have not been tested.

6.1 QoSD daemon

The QoSD daemon monitors the OpenNMS alarm list and generates OSS/J] JMS events
corresponding to changes in the state of the alarms in the list. It can run in two modes; natively on
OpenNMS or in conjunction with a separate J2EE application.

6.1.1 Native OpenNMS provided interface.

OpenNMS does not run natively in a J2EE container but leverages the spring framework and JMX
to provide a container like environment for it's daemons. The qosd daemon code can run natively as
a spring application within OpenNMS. In this case it uses the OSS/J XVT (XML over JMS)
profile to publish alarm list changes . The qosd daemon publishes OSS/J AlarmEvents as both JMS
TextMessages and as JMS ObjectMessages containing AlarmEvent objects.

RMI Alarm List

Linux Server Queries
OpenNMS Jboss

J OSSbean-ear
i (OSSbean-ejb)
RMI Alarm List

Updates

JMS ObjectMessage
AlarmEvents

Onms AlarmDao

JbossMQ

/W

AlarmEventTopic JVT - ® Event Clien

®

AlarmEventTopic XVT vl

JMS TextMessage
(XML) AlarmEvents

Deployment Scenario :
OpenNMS exposes OSS/J JVT interface using separate J2ee Application

6.1.2 Separate J2EE server provided interface.

An alternative configuration is possible where the qosd daemon connects to an ejb application
running in a separate J2EE server. This application is known as OSSBeans-qos-ear and is available
from the OSSbeans site. In this mode the ejb exposes OSS/J semantics and allows external
applications to connect with the ejb as an OSS/J JVT interface. Note that only a very limited alarm
list query functionality is currently provided (query for all alarms).

Note that this configuration requires a J2EE server (Jboss) to be hosting a OSSBeans-qos-ear
locally to each OpenNMS implementation which is running qosd in this mode. In most
circumstances, it is easier to use the native interface for the remote machines they can all use a
single JbossMQ deployment and a local J2EE server is not required for each OpenNMS.

Which mode qosd is running is determined by a setting in the opennms.conf file:
To use the native OpenNMS provided interface use -Dqosd.usej2ee=false
To use the separate J2EE server provided interface use -Dqosd.usej2ee=true

Linux Server
OpenNMS 1

Onms AlarmDao

Linux Server
OpenNMS n

JMS ObjectMessage
AlarmEvents

Linux Server

Jboss

/ JbossMQ \

*‘ AlarmEventTopic JVT 1

“ AlarmEventTopic XVT 2 —]

% AlarmEventTopic JVT n

ﬂ\larmEventTopic XVTn

b

JMS TextMessage
(XML) AlarmEvents

b

JMS ObjectMessage
AlarmEvents

b

Deployment Scenario:
OpenNMS Publishes JVT and XVT (XML) alarm
events to topics on a separate JMS provider
(JbossMQ)

JMS TextMessage
(XML) AlarmEvents

6.2 QoSDrx

The qosdrx daemon can connect to multiple OSS/J event topics hosted on a JbossMQ server and
receive OSS/J alarm events from remote OpenNMS systems running qosd. The local alarm list will
be updated to reflect the remote alarm lists. Note that no resynchronization capability is provided at
this time so it is possible for the alarm lists to get out of alignment if messages are lost. However in
practice, the JMS messaging system should provide a reliable transport.

Linux Server Linux Server
OpenNMS 1

Client subscribes to
Jboss Qosd events from
Alarm

/ﬁ Aggregated Alarm list
JoossMQ Event Clien
AlarmEventTopic X — | . . .
’—» Qosd Publishes to Alarm Event Topic

‘(AlarmEventTopic 1
,‘ AlarmEventTopic 2 -

Linux Server A4 Y
OpenNMS 2 AlarmEventTopic n ‘ ‘ @ @rm Alarm
\%/ Event Event Event osd
‘ W RX2 RX1 a

Onms AlarmDao

Qosdrx subscribes Alarm Event Topic

Event Receiver Threads qosdrx
T
Y
[OssDao J
v
[Onms AlarmDao }

Deployment Scenario : OpenNMS gosdrx daemon creates

threads which subscribe to AlarmEvent Topics (JVT or XVT) Linux Server
and updates the OpenNMS alarm list

OpenNMS

7 OpenNMS qosdaemon Package Description

7.1 Functionality Overview

The qosdaemon provides an elementary OSS/J Qos interface for OpenNMS.

For more information on the OSS/J Qos Specification please see the OSS/J site www.ossj.org. For
more details on configuration and functionality provided please see the documentation and example
configuration in the $opennms_home/contrib/qosdaemon directory.

The interface can run natively in OpenNMS and use OSS/J XML messages to reflect the state of the
OpenNMS internal alarm list or it can use an external ejb running in JBOSS to expose the alarm list
as JVT objects. Currently only OSS/J] XVT and XML AlarmEvents have been implemented. A
future release will service OSS/J XML queries. The interface uses the services of an external JMS
provider. We use the JbossMQ implementation of JMS however it should be fairly easy to
substitute another JMS implementation.

This interface is in two parts which can be run separately as two opennms daemons;

gosd is an OSS/J server which exposes the OpenNMS alarm list as an OSS/J alarm list to other
systems. The changes to the local alarm list are exposed as JMS XML messages which can be used
to update an alarm list in a remote client.

gosdrx is an OSS/J event client which can listen for alarm update events from other servers. It
updates the local OpenNMS alarm list based upon the received events.

During the development of the qosdaemon, OpenNMS migrated to using the Spring framework.
This has been adopted extensively in the design of the qosdrx daemon. However some of the code
in the qosd daemon pre-dated the introduction of spring and has been adapted to use spring rather
than re-written. This has lead to a somewhat convoluted initialization process which will be tidied
up in a later release. In general most classes use injection of control and spring wiring to get their
dependencies and most classes are exposed as implementations of interfaces with the 'impl' suffix to
their name. Where classes have been re-implemented or gone through several versions, the implxx
suffix is used where xx indicates the version. This has allowed several versions of the same class to
co exist and be wired in for testing etc during development. (As an example see QosDimpl2.java)

7.2 Package Overview

7.2.1 OssDao

Overview

The OssDao package provides a buffer between the internals of OpenNMS and the requirements of
the OSS/J code. The internal alarm definition in OpenNMS contains different fields and severity
values to the OSS/] X.733 definitions. This mapping is (mostly) confined to the
OnmsAlarmOssjMapper class.

The OpenNMS alarm definition has been extended to allow it to represent alarms from remote
systems. Each OpenNMS alarm now contains an ApplicationDN which identifies the unique name

http://www.ossj.org/

of the remote system which generated the alarm and an OssPrimaryKey which identifies the local
identifier for that alarm on the remote machine. When an alarm update event is received, the
OssDao searches for an existing alarm with matching ApplicationDN and OssPrimaryKey in order
to do the update. (If ApplicationDN is blank then the alarm is from the local machine).

Each OSS/J alarm contains an identifier for the managed object which issued the alarm. This is
always mapped to an OpenNMS node. The Asset Register entry for nodes now has extra fields to
uniquely identify the managed object system wide (ManagedObjectlnstance and
ManagedObjectClass) . The OssDao provides methods to do a rapid reverse look up on the Asset
register to find nodes with a unique id which is given by the concatenation of the
ManagedObjectInstance and ManagedObjectClass.

Note that when the OssDao is initialized, the QoSDrx log file will record any nodes having no data
or duplicate data in the ManagedObjectInstance and ManagedObjectType fields of the Asset table.
If the ManagedObjectlnstance and ManagedObjectType fields of nodes are empty or duplicated the
OSS/J Alarm management will not work correctly.

Build Directory / package Class / XML configuration Description
org.openoss.opennms.spring.dao | OnmsAlarmOssjMapper This class provides methods to map OSS/J

AlarmValue to OpenNMS alarms. If the
OpenNMS alarm model changes, then most of
the changes to the qosdaemon will happen here

OssDaoOpenNMSImpl This class provides a single point of access to
the OpenNMS alarm list and node asset table
for both the Qosd and Qosdrx. It provides a
cache which allows for rapid look up of alarms
by ApplicationDN and OssPrimaryKey and of
nodes by managedObjectInstance and
managedObjectType

OssDaoOpenNMSImplSingleton | This class provides a wrapper for
0OssDaoOpenNMSImpl which allows it to be
created and initialized as a singleton by either
gosd or qosdrx depending on which daemon
starts first. Once initialized both daemons can

use the same instance of the dao.

7.2.2 QoSD Daemon

Overview

The QoSD Daemon realises an OSS/J QoS server interface by mediating between the OpenNMS
internal alarm management model and an OSS/J implementation realized using the OSSBeans
OSS/J Qos library. The OSSbeans AlarmMonitor bean can run natively in the OpenNMS spring
container or in a remote the Jboss J2EE server. If it is running in the remote J2EE server then it
exposes it's alarm list according to OSS/J semantics as JVT objects through a facade bean. Note that
presently only a very simple query is currently supported to get the entire alarm list. The
AlarmMonitor bean also sends out XVT (XML) and JVT AlarmEvents as the alarm list changes. In

the future it is intended to extend the OSSBeans alarm monitor to also support full JVT and XML
queries. If the AlarmMonitor bean is running natively in OpenNMS, it cannot expose the OSS/J
JVT interface and only generates the JMS events however it is envisaged that this is the way most
users will want to use the interface.

How it works

The qosd.properties file contains the address information for the Qosd to connect to it's JMS queues. The configuration
for the QoSD daemon is picked up from the /etc/qosd.properties file using the singleton
PropertiesLoader class. (In the future this could be picked up using the spring application context
in a similar manner to the qosdrx code.)

The QosD Daemon registers with the OpenNMS eventd daemon to receive events using the call;
eventlpcManager.addEventListener(this, ueiList);

The events which qosd responds to are determined by the ueilist object which is configured by the
QosDConfigFactory using and the QoSDConfiguration.xml file in the OpenNMS /etc directory.
Castor is used to un-marshal the XML into the ueiList according to the QoSDConfiguration.xsd
file.

When an event which qosd has registered for occurs its onEvent() method is called. Qosd responds
to two types of events. Firstly any events corresponding to changes in the asset register are used to
force an update in the OssDao node cache. Secondly an 'alarm changed event' causes the qosd to
review the local OpenNMS alarm list for changes.

The qosd depends upon the vacuumd daemon which must be configured with an automation to look
for new or changed alarms in the local alarm list and throw an 'alarm changed event' if a change is
detected. An example vacuumd-configuration.xml file is included in /contrib/qosdaemon/qos-
example-configuration.

The vacuumd automation also implements the X733 alarm life cycle whereby OpenNMS correlates
alarm raising and alarm clearing SNMP traps and removes cleared and acknowledged alarms from
the alarm list.

Qosd responds to an alarm changed event by causing the OssDao to update it's cache of
OnmsAlarm values with a new snapshot of the alarm list in the database, translates the OnmsAlarm
values to OSS/J AlarmValues using the OnmsAlarmOssjMapper and then forwards this new list of
alarms to the OSSBeans AlarmMonitor bean. The AlarmMonitor bean compares this new list with
it's existing list and sends out AlarmEvents as alarms in its current list are added, deleted or
changed to match the new list.

The AlarmListConnectionManager interface determines whether the remote J2EE or local spring
implementation of the AlarmMonitor is used. Two implementations of the
AlarmListConnectionManager are available to be wired in wusing spring;
AlarmListConnectionManagerJ2eelmpl connects to the remote bean using RMIL
AlarmListConnectionManagerSpringlmpl.java implements the bean locally.

This choice is determined by the setting of the system variable -Dqosd.usej2ee={true}|{false}' in
the /etc/opennms.conf file which is read when the qosd is initialized.

In a heavy alarm storm, vacuumd could trigger multiple alarm changed events such that qosd
initiates multiple parallel look ups to the database which would be very costly. The
OpenNMSEventHandlerThread is used to avoid this eventuality by latching any new alarm changed
events while a database look up is being performed. Thus a lookup has to complete before a new

one is initiated. All of the changes which occur during this time will be picked up on the next alarm

retrieval.

Build Directory / package

Class / XML configuration

Description

org.openoss.opennms.spring.qosd:

AlarmListConnectionManager

Interface defining how qosd interfaces with
OSSBeans AlarmManager bean

org.openoss.opennms.spring.qosd.
ejb

AlarmListConnectionManager]2eel
mpl
AlarmListJ2eeConnectionManager
Thread

Implementation of interface to remote
AlarmMonitor bean on Jboss.
ConnectionManagerThread establishes rmi
connection to J2EE server and waits for
server to be available if connection is lost

org.openoss.opennms.spring.qosd.

AlarmListConnectionManagerSpri

Implementation of interface to

spring nglmpl AlarmMonitor bean running locally in
OpenNMS
QoSD.java Interface and implementation of QoSD
QoSDimpl2.java daemon.

OpenNMSEventHandlerThread

Provides a latch for events which occur
while a database lookup is happening

QoSDConfigFactory.java

Classes for reading in configuration of

UEIHandler.java QoSD
PropertiesLoader.java
/src/main/castor castorbuilder.properties Configuration for Castor XML marshalling
QoSDConfiguration.xsd framework.
Defines the format and contents of the
QoSD-configuration.xml file which sets up
which OpenNMS events the qosd daemon
listens for
org.openoss.opennms.spring.qosd. | QoSD.java All OpenNMS daemons are started as JMX
jmx: QoSDMBean.java beans in the same way. The QoSD.java and

QoSDMBean.java in the qosd.jmx package
are used by opennms to initiate new threads
for running the daemon and to pass in it's
spring application context in order to allow
access to OpenNMS Daos and other
daemons.

Jsrc/main/resources/org/openoss/o
pennms/spring/qosd

OssjTypeSpecificationApplication
Context.xml

This spring application context file is used
as a factory to configure the default settings
for the OSS/J AlarmValues before they are
populated with alarms.

Build Directory / package Class / XML configuration Description

gosd-j2ee-context.xml These application context files are used to
qosd-spring-context.xml either set up a local AlarmMonitor bean or a
remote AlarmMonitor bean on a J2ee server.
Which application context is used is
determined by the setting of the system
variable -Dqosd.usej2ee={true}|{false}' in
the /etc/opennms.conf file

org.opennms.web.alarm Alarm A copy of the
org.opennms.web.alarm.Alarm class is
included in this project to provide a severity
mapping for OpenNMS alarms. This is done
because at the time of writing OpenNMS
did not generate a webapp jar which could
be accessed through MAVEN. If the
webapp is made into a maven package then
this can be replaced with a reference in the
pom file. Alternatively (and better)
OpenNMS could include the severity
mapping centrally in the OnmsAlarm

model.

7.2.3 QoSDrx Deamon

Overview

The QoSDrx daemon implements multiple OSS/J JMS event listener clients for OpenNMS. Each
client connects to a different OSS/J JMS AlarmEvent Topic on a JMS provider (tested with
JbossMQ but other providers could be used) . Alarm Events are used to update the local OpenNMS
alarm list such that it mirrors the alarm event list in the remote OSS/J servers. The clients are fully
configurable using an XML configuration file in the /etc directory. Planned future extensions to the
Daemon will allow it to also synchronize with remote servers using OSS/J XML queries.

How It Works

The QoSDrx Daemon realises an OSS/J QoS client interface using the OSSBeans OSS/J Qos
library. The Library provides a collection of classes for implementing clients and servers for
receiving or transmitting OSS/J messages as XML or JVT objects. Fundamental to the library is the
concept of an OSSbean which is spring class which can be run as a separate thread for handling
OSS/J messages and is configured using a spring application context XML file.

As with the QoSD daemon, the qosdrx.jmx classes (QoSDrx and QoSDrxMBean) are used by
opennms to spawn the qosdrx daemon and initialise an OssDao if it does not already exist. The
daemon passes the OpenNMS application context to the OSSBeans OSSBeanRunner class which
reads the /etc/QoSDrxOssBeanRunnerSpringContext.xml file to generate an application context and
spawn separate threads for each defined OssBeanAlarmEventReceiver class. Each
OssBeanAlarmEventReceiver then registers to listen to it's defined JMS AlarmEventTopic and
waits to receive OSS/J AlarmEvents (both XVT and JVT events are supported). If any receiver

cannot attach or gets disconnected from its JMS Topic, it waits for a defined timeout and then tries
to reconnect.

The OssBeanAlarmEventReceivers need to have AlarmEventReceiverEventHandler classes
assigned which are used to perform appropriate actions on reception of each event. The QoSDrx
daemon defines an AlarmEventReceiverEventHandler implementation which interacts with the
OssDao to update the OpenNMS Alarm list database on each received event. (The present QoSDrx
demon AlarmEventReceiverEventHandler implementation is called
QoSDrxAlarmEventReceiverEventHandlerImpl?2)

The intention of this design is to extend the OSSbean concept in the future to make each OSSbean
also a JMX Mbean. This would allow finer real time monitoring and management of each receiver
client. However in the present design all of the OSSbeans are spawned off the root OpenNMS JMX
bean which is able to report the statistics from all of the beans using the OpenNMS MX4J console.

Alarm Life cycle

Note that the present use case only utilizes NewAlarmEvent and AlarmCleared events to update the
Alarm list. Other AlarmEvents are simply logged. However the
QoSDrxAlarmEventReceiverEventHandlerImpl can easily be extended to use more of the OSS/J
alarm event types if a tighter coupling between client and server is required. The following process
is followed by QoSDrx to process AlarmEvents;

1. When an NewAlarmEvent message is received, it's ApplicationDN and OssPrimaryKey are
checked against the OpenNMS alarm list. If the alarm exists, there is an error which is
logged and the NewAlarmEvent message is ignored (the NewAlarmEvent messages should
refer only to a new not an existing alarm).

2. If the alarm is new (i.e. Not in the AlarmList), QoSDrx has two modes of operation based
upon how it is desired to handle the managedObjectInstance and ManagedObjectType fields
in the incoming messages.

a) Alarm can be logged against a node which is named to represent the AlarmTopic. Each
OssBeanAlarmEventReceiver is given a unique name in the
QoSDrxOssBeanRunnerSpringContext.xml file. In this case OpenNMS should be
configured with nodes named after the name of each OssBeanAlarmEventReceiver. When
an alarm comes in to a given topic, the alarm is logged in OpenNMS against a node named
with the same name as the OssBeanAlarmEventReceiver. This is a good configuration if you
simply want to look at alarms from subordinate OSS/J servers on a per server basis but you
don't want to put every managed object in the OpenNMS database corresponding to the
managedObjectlnstance and ManagedObjectType of all the objects being monitored
remotely.

b) Alarms can be logged against nodes having the same managedObjectlnstance and
ManagedObjectType fields as the incoming message. In this case the listening OpenNMS
must have a database populated with all of the nodes (with the same Asset data for
managedObjectlnstance and ManagedObjectType) as populated in the subordinate
OpenNMS's

Note that in both the above cases, regardless of how the alarm is displayed locally, it will be
forwarded through QosD with the same managedObjectInstance and ManagedObjectType as
the original message. (i.e. OpenNMS will not modify the origin of the message even though

it displays it against a different node locally)

3. When an AlarmClearedEvent message is received it's ApplicationDN and OssPrimaryKey
are checked against the OpenNMS alarm list. If the alarm does not exist, there is an error
which is logged and the ClearedAlarmEvent message is ignored (the ClearedAlarmEvent
messages should refer to an existing alarm).

4. If the corresponding alarm exists in the Alarm List, it will be set to cleared and

acknowledged. The vacummd process will subsequently remove the cleared and
acknowledged alarm from the alarm list.
Note that the behavior of the interface could easily be extended to allow usage of separate
acknowledgment messages of cleared alarms before removing them from the list. However
this has not been done as it appeared to complicate the use case without much extra value. In
the future we will make alternative alarm life cycle behaviour's a configurable item.

Build Directory / package Class / XML configuration Description
org.openoss.opennms.spring.qo | QoSDrx.java As with Qosd used by OpenNMS to start
sdrx.jmx QoSDrxMBean.java the Daemon.
org.openoss.opennms.spring.qo | QoSDrx.java Class which initialises the OssDao and
sdrx loads the OSSbeanRunner in order to

start the OSS/J AlarmEvent clients.

QoSDrxAlarmEventReceiverEventHandl | QoSDrxAlarmEventReceiverEventHandl
erlmpl2 erlmpl2 provides a handler for OSS/J
QoSDrxAlarmEventReceiverEventHandl events received which updates the
erlmplShell OnmsAlarm list through the OssDao.
Note that an unused
QoSDrxAlarmEventReceiverEventHandl
erImplShell simple logs all events
received. This provides a template for
writing any other AlarmEvent handling

behaviour.
Jsrc/main/resources/org/openos | qosdrx-spring-context.xml Initial spring context used to start the
s/opennms/spring/qosdrx OSSbeanRunner which then loads the

QoSDrxOssBeanRunnerSpringContext.x
ml file and launches the
AlarmEventReceiver clients.

8 Appendix 1: Example Configuration of the OSS/J interface

An example configuration for the OSS/J interface is provided in the OpenNMS /contrib/qosdaemon
directory. The following table describes the contents of each of the files.

The simplest way to get the OpenNMS Qos interface working is to build and install opennms of
Fedora Core 4 along with tomcat55 and then run the qos installation script,
opennms_1_3_2_example_deploy_xdotx.sh, prior to starting OpenNMS. (See appendix on
installation on FC4 below)

Configuration File Purpose
/qosdaemon
README.txt
LISCENCE(gpl).txt
[testscrips
opennms_IF.sh opennms_IF.sh runs a small client program called
opennms_IFOpenOSS1.sh SentinallF.java. This uses the properties in
opennms_IFOpenOSS2.sh qosclient.properties to connect to the AlarmEvent
opennms_IFOpenOSS3.sh Topic queue and receive AlarmEvents. The client can

display received events and can also forward much
simplified XML representation of the X733 Alarm
fields to a remove socket for interfacing to other
applications. For usage information type sh
opennms_IF.sh -help.

The opennms_IFOpenOSSx.sh scripts are
convenience scripts for starting the same client as
opennms_IF.sh using the properties in the
qosclientOpenOSSx.properties files)

gosclient.properties qosclient.properties sets up the configuration for the
gosclientOpenOSS|1.properties client interface to connect to anAlarmEvent Topic

gosclientOpenOSS2.properties
gosclientOpenOSS3.properties

/qos_example_configuration This example configuration provides a simple
example of how to set up the OpenNMS qosd
application. This should be used to help you work out
how to incorporate the qosdaemon into your local

configuration.

README..txt

opennms_1_3_2 example_deploy_1ldot0.sh This script provides a simple method to deploy all of
the example configuration files into the correct
directories.
Notes:

1. This script has been designed for use on a
Fedora core 4 installation using a jpackage

installation of tomcat55. A standard
installation of Jboss 4.0.2 is expected to be
simlinked from /opt/jboss and OpenNMS is
expected to be installed at /opt/OpenNMS.

2. The resulting configuration will leave jboss
configured to run on port 8080 and the
OpenNMS tomcat at 8081. This is to allow
tomcat and jboss to run on the same machine.
If they are running on separate machines, the
tomcat setting need not be changed.

2. You must also change the hosts file to create
a hostname jbossjmsserver]l pointing to your
running jboss server. To do this from the kde
toolbar:

3. open /system settings/ network select the
hosts tab

4. select new and add a host with Hostname:
jbossjmsserverl Address 127.0.0.1

WARNING: without modification this script will
overwrite tomcat55 and OpenNMS configuration files
in SOPENNMS_HOME/etc so only use on a new
install or if you are happy you have backed up your
local OpenNMS configuration files

/jboss This folder contains configuration files to set up
JbossMQ messaging (and optionally OSSbeans-qos-
ear-xx.ear if it is installed)

log4j.xml Sets up logging to minimise to INFO log messages

from OSSbeans-qos-ear-xx.ear if installed

openoss-jms-service.xml

Sets up 10 separate example AlarmTopics and
Message Queues to allow up to 10 OpenNMS qosd
deamons to publish to separate topics. It should be
fairly obvious how to increase / decrease the number
of topics or otherwise change this configuration.
Notes

1. The names of the queues match the naming
conventions of the OSS/J qos specification.
This is merely a convention. The names are
actually treated as free format strings.

2. It should be easy to see how the Topic/
Queue names are matched to the names in the
qosd.properties, qosdclient.properties and
QoSDrxOssBeanRunnerSpringContext.xml

openoss_qos_jboss_start.sh

Starts jboss with the following system settings:
-Djava.rmi.server.hostname=jbossjmsserver1
-DqosbeanpropertiesFile=
/opt/jboss/server/default/conf/props/qosbean.propertie
S

(TODO - this appears not to be used — why?)

uil2-service.xml

Sets up the uil2 transport configuration for JbossMQ.

This could be changed to set up different JbossMQ
transport configuration

/opennms

This folder contains the core configuration files to get
the qosdaemon running

opennms.conf

This file is used to set system properties for
OpenNMS. The following properties are required for
gosdaemon:
-Djava.security.policy=/opt/OpenNMS/etc/rmi.policy
The security policy is required to allow OpenNMS to
make an rmi connection to the OSSbeans-qos-ear-
xx.ear application if installed on jboss.

-Djava.naming.provider.url=
jnp://jbossjmsserver1:1099

This give the name of the jndi naming provider it is
set to jbossjmsserverl which should be the host name
of the Jboss server running JbossMQ. (This name can
of course be changed if all the other configuration
references to jbossjmsserverl are changed)

-Djava.naming.factory.initial=
org.jnp.interfaces.NamingContextFactory

-Djava.naming.factory.url.pkgs=org.jboss.naming
Points to the Jboss naming factory (this class is in the
Jboss Client library This could in theory be changed
to point to another J2ee provider if the correct client
classes are available. However this has not been
tested)

-DpropertiesFile=/opt/OpenNMS/etc/qosd.properties
qosd.properties provides the configuration for the
JMS topics which opennms will publish to.

-Drx_propertiesFile=
/opt/OpenNMS/etc/qosdrx.properties

(Note :This configuration is not used as the current
qosdrx configuration is contained in
QoSDrxOssBeanRunnerSpringContext.xml. However
qosdrx properties could be used if the commented out
example referencing lines in
QoSDrxOssBeanRunnerSpringContext.xml are
enabled.

-Dqosd.usej2ee=false

If set false , this property tells qosd to run internally to
opennms and publish to the external JbossMQ topics.
The interface then only supports AlarmEvents but
runs natively in OpenNMS. This is the simplest
configuration and recommended for normal use.

If set true, this property tells qosd to connect to the
OSSbeans-qos-ear-xx.ear running in a local Jboss
server. This then allows JVT access to the alarm list.

service-configuration.xml

This file is used by OpenNMS to startup it's deamons.
To run qosd uncomment the section beginning
<service>
<name>0OpenNMS:Name=QoSD</name>
To run qosdrx uncomment the section beginning:
<service>
<name>0OpenNMS:Name=QoSDrx</name>

gosd and qosdrx can be run at the same time. However
make sure that qosdrx is not configured to listen to the
output from qosd — otherwise you will have a very
effective positive feedback loop and an ever
increasing list of alarms! In this example
configuration qosd publishes to Topic .../OpenOSS/...
and qosdrx listens to topic .../OpenOSS1/...

QoSD-configuration.xml

This file sets the events which the qosdaemon code
will listen to. By default it listens for the event
generated by the vacuum configuration when the
alarm list changes;
uei.opennms.org/vacuumd/alarmListChanged

and for events signifying changes in the node

inventory which it uses to update it's local managed

object instance and managed object type cache:
uei.opennms.org/nodes/assetiInfoChanged
uei.opennms.org/nodes/nodeAdded
uei.opennms.org/nodes/nodeLabelChanged
uei.opennms.org/nodes/nodeDeleted

QoSDrxOssBeanRunnerSpringContext.xml

This file is a spring application context to set up the
configuration for the qosdrx. Separate threads are set
up to connect to each topic.

A list of processes to run is in the segment

<bean id="OssBeanRunnerList"

The definition of each thread is given below. e.g.
<bean id="Outstation_OpenOSS1"
TODO - full description of this config file

gosdrx.properties

Optional — see note in opennms.conf above

log4j.properties

This file sets up logging for the daemons in
openNMS. Two additions are made for QoSD and
QoSDrx.

QoS daemon server
log4j.category.OpenOSS.QoSD=DEBUG, QOSD

QoSrx daemon server
log4j.category.OpenOSS.QoSDrx=DEBUG,

QOSDRX

Note: In production you should set the logging options
in this file to INFO as DEBUG is extremely verbose
and will quickly create very large log files and also
slow down the QoSD and QoSD deamons
significantly..

rmi.policy

Used to allow remote rmi connections to Jboss. (See
opennms.conf above). Note that this setting is wide
open. You might want to tighten up access security in
a production environment.

rrd-configuration.properties

Sets rrd to use jrobin as default instead of rddTool
format.

(Note that this was needed for the BUTE Qos
performance code and not needed for the present
gosdaemon)

web.xml

Sets up opennms to use tomcat on port 8081 and also
to refresh the alarm list display at 10 second intervals.

/opennms_fault_config

eventconf.xml events

Configures how opennms treats incoming traps and
events. Note in this configuration this is the same as
eventconf_NoOpennmsalarms.xml

This file references additional events in
/ossj_events.xml

eventconf_WithOpennmsalarms.xml

This is default eventconf.xml with additional oss;j
events referencing /events/ossj_events.xml

eventconf_NoOpennmsalarms.xml

This is default eventconf.xml with additional oss;j
events but without the opennms generated alarms.
This means the alarm list only contains alarms which
have been generated as the result of traps

vacuumd-configuration.xml

VERY Important.

Contains automation which looks for new alarms in
the alarm list and calls the Qosd daemon using the
new uei.opennms.org/vacuumd/alarmListChanged
event when new alarms are found. Also reconciles
raise with clear alarms and deletes cleared and
acknowledged alarms

/events

Contains additional event definitions referenced by
eventconf.xml

ossj_events.xml

Contains the oss;j specific events created for the
gosdaemon interface and some test snmp trap
definitions to allow the scripts in /testtraps to work

/testtraps

ossjtesttraps_raise.sh

Simple script to raise an alarm on node 127.0.0.1
Alarm raised is definred in ossj_events.xml
<uei>uei.opennms.org/ossjTestEvent/newAlarm/1</u
ei>

ossjtesttraps_clear.sh

Simple script to raise an alarm on node 127.0.0.1
alarm cleared is defined in ossj_events.xml
<uei>uei.opennms.org/ossjTestEvent/clearAlarm/1</u

ei>
trapgen Simple utility for generating traps from scripts.
Written by http://www.ncomtech.com/trapgen.html
Note to run this on fc4 you must also have the library
compat-libstdc++-296-2.96-132.fc4.i386.rpm installed
/tomcat55
server.xml Sets up tomcat to run on port 8081

tomcat55.conf

Various setting to get tomcat55 running on fedora
core 4 with opennms;
sets JVM, Tomcat user=root etc

/images

The images directory was used for the BUTE
performance management application. Not presently
used.

OSS_logo_final.gif

WEB-INF

web.xml

http://www.ncomtech.com/trapgen.html

9 Appendix 2: Notes on setting up qosdaemon on Fedora 4

These notes are intended to provide some help in getting OpenNMS runnning with the qosdaemon

on Fedora Core 4. They can be adapted to other distributions.

9.1

Installing OpenNMS 1.3.2-SNAPSHOT

The following summarises the instructions for installing OpenNMS Fedora 4 based on

http://www.opennms.org/index.php/Building_ OpenNMS

preliminary set up of FC4

1.

It is useful to have yumex installed as a visual package manager. This makes it easier to pick
packages you need for the next steps. (yum install yumex)
Ensure subversion is installed on your machine (yum install subversion)
Ensure java 1.5 is installed on your machine. This is best done on Fedora core using
Jpackage which allows you to easily download and install java packages from the jpackage
repo. The following note explains how to use jpackage to install sun java 1.5 on fedora core
http://fedoranews.org/mediawiki/index.php/JPackage_Java_for_FC4
After installing jpackage, the jpackage repo and java 1.5, install tomcat55 using yumex
(do this after jpackage repo is installed so that tomcat gets the right dependencies). Start
up tomcat to check it is running and has correct dependencies before proceeding;
sudo /sbin/service tomcat55 start
browse to http://localhost:8080 - if tomcat splash is displayed you are in business
stop tomcat before proceeding; sudo /sbin/service tomcat55 stop
Ensure postgres is installed (yum install postgresql postgresql-devel)
Ensure rrdtool is installed on your machine (yum instal rrdtool rrdtool-devel)
Ensure maven? is installed on your machine (Note that maven?2 is included in the opennms
build and opennms will build without it installed. However we need maven?2 if you want to
build the OSSbeans package separately
a) download maven 2.0.4 from http://maven.apache.org/
b) unpack into /usr/local/maven-2.0.4/
¢) place the maven /bin directory on your classpath and set up JAVA_HOME to point to
your java 1.5 jre. On Fedora core 4 the following .bashrc login script sets this up when
you login;
.bashrc
User specific aliases and functions
PATH=$PATH:/usr/local/maven/maven-2.0.4/bin
export PATH
export JAVA_HOME=/usr/lib/jvm/java
Source global definitions
if [-f /etc/bashrc |; then
. letc/bashrc

fi

d) after setting up the classpath check maven is installed correctly by typing mvn --version

Installing OpenNMS (this is a standard install of opennms on fc4)

8.

10.

11.

12.

13.

14.

15.

cd to directory where you want to download and build opennms source code and issue the
command;
svn co https://svn.sourceforge.net/svnroot/opennms/opennms/trunk opennms
cd to the downloaded opennms directory (cd opennms)
Type the following commands
sh build.sh clean # this should be done before any build to clean out any previous data
sh build.sh install -Dopennms.home=/opt/OpenNMS package assembly:attached
This command will use maven to build opennms. On first use it will take some time as it
will download all of the dependencies into a local maven repository on your machine
($home/.m2).
Note: once the dependencies are downloaded, you can do a build off-line using
sh build.sh -o install -Dopennms.home=/opt/OpenNMS package assembly:attached
this builds a zip file called opennms-1.3.2-SNAPSHOT .tar.gz in the target directory. Copy
this zip file to /opt/OpenNMS and unpack the contents (need to be root to do this)
Follow the instructions in the opennms config guide in /opt/OpenNMS/docs/install.html to
set up the postgres database if it is not already set up.
Set up the open nms application using following steps;
a) cd /opt/OpenNMS/bin
b) make the scripts runnable; sudo chmod 777 *
¢) point openNMS at the jvm; sudo sh runjava -s
d) upgrade /install the database tables;
start postgresql if not started (; sudo /sbin/service postgresql start)
sudo sh install -disU
(this will upgrade an existing database or install a new one if needed)
e) link tomcat55 to the opennms web app;
sudo sh install -y -w /usr/share/tomcat55/conf/Catalina/localhost
Start open nms and tomcat and check all is running;
to start opennms
cd /opt/OpenNMS /bin directory ; sudo sh opennms -v start
the consol should show all of daemons starting up correctly
start tomcat;
sudo /sbin/service tomcatS5 start
browse to http://localhost:8080/opennms and login using account: admin; password: admin
once you are satisfied all is working, shutdown opennms and tomcat before trying to get the
gosdaemon to work
sudo sh opennms -v stop
sudo /sbin/service tomcatS5 stop

9.2 Running the qosd application

The previous steps provides a standard install of opennms of fc4. Having installed opennms the

following steps will allow you to test qosd on your system
16. install jboss 4.0.2

17.

18.

a)

jboss provides the jms messaging service. It can be installed on a remote machine but in
this example we are installing it locally. Note that the qosdaemon test scripts need some
jars from the jboss install to be copied to the /opt/OpenNMS/lib directory. Ideally these
should have been included in the OpenNMS build but unfortunately they are not
available in any Maven repository.

download jboss 4.0.2 from http://labs.jboss.com/portal/jbossas/download
(jboss4.0.2.zip)

unpack jboss4.0.2.zip into /opt/

create a symbolic link from /opt/jboss/ to /opt/jboss2.0.2 ;

sudo In -s /opt/jboss-4.0.2 /opt/jboss

For this configuration you need to create a host name 'jbossjmsserverl' pointing to this
server. To do this from the kde toolbar open /system settings/ network and select the
hosts tab. Select new and add a host with Hostname: jbossjmsserverl Address 127.0.0.1

a simple example configuration and install script to get the qosdaemon running can be found

in the OpenNMS contrib directory.

a)
b)

9)

cd /opt/OpenNMS/contrib/qosdaemon/qos_example_configuration

A script is provided to move all of the configuration files into the appropriate directories
and get you started.

WARNING: Note - this configuration is provided as an example and will overwrite the
opennms default configuration or any other configuration you have installed. It will also
change the tomcat55 configuration so that it runs on port 8081 to allow jboss to run on
port 8080. (If you will not be running jboss on the local machine the tomcat
configuration can be omitted). You can easily adapt this configuration to work with your
local configuration but you will need to merge the configuration files appropriately.

To install the qosdeamon configuration ;

sudo sh opennms_1_3_2_example_deploy_1dot0.sh

Test that the OSS/J test clients work with jboss

a)

b)

d)

open a terminal window and move to the Jboss bin directory

cd /opt/jboss/bin

run the newly installed startup script;

sudo sh openoss_qos_jboss_start.sh

You should see the jboss consol log. If all is well Jboss will start up .

Leave this window open as Jboss will stop if you close it. (You can run jboss as a
daemon but this is not covered here). To stop jboss properly type control-c in this
window.

To see if Jboss is working open a new terminal and try;

telnet jbossjmsserver 1099

You should see something like;

http://labs.jboss.com/portal/jbossas/download

Trying 192.168.2.4...

Connected to jbossjmsserverl (192.168.2.4).

Escape character is "\]".

.srjava.rmi.MarshalledObject|?>IhashlocBytest[BobjBytesq~xp?Fur[Txp&?
http://bitterne:8083/q~q~uq~?7rs
org.jnp.server.NamingServer_Stubxr?java.rmi.server.RemoteStub????xrjava.rmi.server.RemoteObject?
a3xpw:

Unicast?

Connection closed by foreign host.

e) Use the client test program to connect to jboss
cd /opt/OpenNMS/contrib
sh opennms_IF.sh -xreceivel
You should see something like;

starting sentinal interface program

k*(Option: receive - testing OSS/J connection only*

Initialise Session:

Client Properties File Loaded

Using JNP: jnp://jbossjmsserver1:1099

java.naming.provider.url= jnp://jbossjmsserver1:1099

java.naming.factory.initial= org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs= org.jboss.naming

Initial context created

Trying to connect to AlarmMonitorBean

Connecting to AlarmMonitorBean:System/OpenOSS/ApplicationType/AlarmMonitor/Applica
Obtained home, and created Session

Trying to connect to message queues

Topic Connection Factory:System/OpenOSS/ApplicationType/AlarmMonitor/Application/1
Event Topic :System/OpenOSS/ApplicationType/AlarmMonitor/Application/1-0;0-0;0p
XVT Event Topic:System/OpenOSS/ApplicationType/AlarmMonitor/Application/1-0;0-0;0p
XML Message Queue:System/OpenOSS/ApplicationType/AlarmMonitor/Application/1-0;0-0;
Session Initialised

Subscribing to OSS/J XVT jms session:

Subscribed - Waiting for events ;

Waiting: Event Counts:- ListRebuilt:0 NewAlrmEvt:0 ClrAlrmEvt:0 AlrmCngEvt ObjMsg:0
TxtMsg:0

F*¥Waiting for OSS/J XVT XML JMS text message event*

When OpenNMS starts up you will see the client displaying events and he Event Counts
will go up as each event arrives.

To stop the client use Control-c

To see other options for the client try; sh opennms_IF.sh -help

Leave the client running while you start up OpenNMS

19. Test OpenNMS
a) Note the alarm table has been extended to accommodated OSS/J alarm fields. After an
upgrade to opennms and before using the qosdeamon, you should delete any old alarms
in the alarm table otherwise QosD may fail at start up.

b)

9)

d)

e)

You can use the postgres gui application pgadmlII to provide an sql terminal to look at
the alarm table. Once you have logged into the OpenNMS database you can use;

delete from alarms; # to delete alarms in table

select * from alarm; # to view all of the alarms in the table.

When OpenNMS starts up for the first time it does not have node data in it's database.
For the following tests to work it is necessary for OpenNMS to at least have it's own
node in the database (127.0.0.1 — localhost). If the trap generating scriptr tests are run
before this is created, the QoSD may fail the next time it is started as it does not have a
default node to reference. (This can be resolved by clearing the OpenNMS alarm table
of old alarms and ensuring that localhost exists).

OpenNMS should discover localhost but can be forced to add the node using the
OpenNMS /Admin/AddInterface web page.

start opennms (/opt/OpenNMS/bin/ sudo sh opennms.-v start). After a short time you
should see the following; QoSD and QoSDrx are the two daemons for the qosddeamon
interface.

OpenNMS.Eventd : running

OpenNMS.Trapd : running

OpenNMS.Dhcpd : running

OpenNMS. Actiond : running

OpenNMS.Capsd : running

OpenNMS.Notifd : running

OpenNMS.Scriptd : running

OpenNMS .Rtcd : running

OpenNMS.Pollerd : running
OpenNMS.Collectd : running
OpenNMS.Threshd : running
OpenNMS.Discovery :running
OpenNMS.Vacuumd : running
OpenNMS.EventTranslator: running
OpenNMS .PassiveStatusd : running
OpenNMS.QoSD : running
OpenNMS.QoSDrx : running

Note - the logs for QoSD and QoSDrx are in the /logs library. By default the logging

setting is very very verbose. To reduce the log output edit before starting opennms the
/opt/OpenNMS/etc/logdj.properties change the lines from DEBUG to INFO;

QoSrx daemon server

log4j.category.OpenOSS.QoSDrx=DEBUG, QOSDRX

QoSrx daemon server

log4j.category.OpenOSS.QoSDrx=DEBUG, QOSDRX

Look at the running opennms_IF.sh client. You should see it has received at least an
'AlarmListRebuilt event and possibly others if there were already alarms in the
OpenNMS alarms list

Open a browser and look at the OpenNMS alarm list at

http://localhost:808 1/opennms/alarm/
f) Try injecting test alarm raise and alarm clear traps using the following scripts.

cd /opt/OpenNMS/contrib/qosdaemon/qos_example_configuration/testtraps
sudo sh ossjtesttraps_raise.sh
sudo sh ossjtesttraps_clear.sh
You should see alarms added and deleted from the web alarm list as it refreshes
You should also see XML alarm events on the opennms_IF.sh terminal.
20. To test that the qosdrx works you need to install another OpenNMS on a seperate server
and change its configuration so that it injects alarms onto the opennms running qosdrx
a) Install and test OpenNMS as above
b) edit /opt/OpenNMS/etc/service-configuration.xml and comment out the section which
starts up qosdrx. The remote OpenNMS should not be running qosdra as it will get into a

feedback loop.
<!--
<service>
<name>0OpenNMS:Name=QoSDrx</name>
<class-

name>org.openoss.opennms.spring.qosdrx.jmx.QoSDrx</class-name>
<invoke at="start" pass="0" method="init"/>
<invoke at="start" pass="1" method="start"/>
<invoke at="status" pass="0" method="status"/>
<invoke at="stop" pass="0" method="stop"/>
</service>

¢) Edit /opt/OpenNMS/etc/qosd.properties. Change 'OpenOSS' to OpenOSS1 as below.
The OpenNMS qosd will now send alarms to the OpenOSS1 topic;

http://localhost:8081/opennms/alarm/

org.openoss.opennms.spring.qosd.naming.provider=jnp://jbossjmsserver1:1099
org.openoss.opennms.spring.qosd.naming.contextfactory=org.jnp.interfaces.Na
mingContextFactory
org.openoss.opennms.spring.qosd.naming.pkg=org.jboss.naming

org.openoss.opennms.spring.qosd.jvthome=System/OpenOSS1/ApplicationType
/AlarmMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/JVTHome

org.openoss.opennms.spring.qosd.jms.topicconnectionfactory=System/OpenOS
S1/ApplicationType/AlarmMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/TopicConnectionFactory
org.openoss.opennms.spring.qosd.jms.topic=System/OpenOSS1/ApplicationTyp
e/AlarmMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/JVTEventTopic

org.openoss.qosd.jms.xvttopic=System/OpenOSS 1/ApplicationType/AlarmMon
itor/Application/1-0;0-0;0penNMS_OpenOSS_AM/Comp/XVTEventTopic

org.openoss.qosd.jms.queueconnectionfactory=System/OpenOSS1/ApplicationT
ype/AlarmMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/QueueConnectionFactory
org.openoss.qosd.jms.messagequeue=System/OpenOSS1/ApplicationType/Alar
mMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/MessageQueue

org.openoss.opennms.spring.qosd.url=http://OpenOSS1:8081/opennms

d) To test if this OpenNMS is sending messages correctly open a new terminal and start a
client to listen to its queue. For convenience this can be done using the script
cd /opt/OpenNMS/contrib
sh opennms_IFOpenOSS1.sh -xreceivel

e) Start the second opennms you should see it start up with only the qosd daemon running .
You should also see the opennms_IFOpenOSS1.sh terminal register an alarm list rebuilt
event

f) Try injecting alarms using the trap scripts above into the second opennms. You should
see the first opennms alarm list match the changing remote opennms alarm list.

21. Adding managedobjectinstance, and managedobjectclass data to alarms

So far we have sent out alarms with no unique object reference. In normal operation the
OSS/J interface should have a unique object references for each managed object. This
reference will be reflected in the OSS/J XML message fields 'managed object class' and
'managed object instance'. New fields have been added to the OpenNMS assets table to
allow each node in OpenNMS to thus be uniquely identified. In normal operation every

node in the table should have a unique match for the concatenation of these fields . The
assets table is referenced by nodeid (which is the OpenNMS internal key for all nodes
in the nodes table). The OSS/J unique reference is given by the fields

managedobjectinstance and managedobjecttype (= OSS/J managed object class) . To

see the entries in the database use;
sel ect nodei d, managedobj ecti nstance, nanagedobj ecttype
from assets;

Presently the only way to insert this data is to modify the Assets table directly in the

database using SQL. (In a future release the OpenNMS Import commandshould be

update to allow the assets table to be imported using XML scripts and the OpenNMS Ul

will allow users to directly manipulate these fields). For now you will manually have

to add the assets data for each node using pgsqladminllIl. Using the following process;

1. Follow the documented procedures to add nodes to OpenNMS or allow OpenNMS
to discover the nodes in your network. Each node will be labeled with it's IP address
by default.

2. For each node referenced in the Nodes table , ensure that it also has a reference in
the assets table. (put in some dummy data using the assets UI)

3. For each node in the Assets table use pgsqladmin to add the managedobjectinstance,
managedobjecttype data. This can be scripted using the following type of sql

command;
updat e assets set
managedobj ect t ype=' Br oadcast Equi pnent ',
managedobj ecti nst ance="' Cal dbeck- BX- Al S- TX
where nodeid = (sel ect nodeid from node where
node. nodeType <>'D AND nodel abel =" 10. 100.0.1");
4. Having added the assets managedobjectinstance, and managedobjectclass data this

will show up in every OSS/J alarm issued by OpenNMS.

This completes the installation and testing of the Qos interface. See the sections above for more
information on how to configure the interface in you environment.

	 1 Introduction to OSS/J
	 2 Design Philosophy
	 3 OSS/J Conformance
	 4 Production Use
	 5 Licence
	 6 Functionality Provided
	 6.1 QoSD daemon
	 6.1.1 Native OpenNMS provided interface.
	 6.1.2 Separate J2EE server provided interface.

	 6.2 QoSDrx

	 7 OpenNMS qosdaemon Package Description
	 7.1 Functionality Overview
	 7.2 Package Overview
	 7.2.1 OssDao
	 7.2.2 QoSD Daemon
	 7.2.3 QoSDrx Deamon

	 8 Appendix 1: Example Configuration of the OSS/J interface
	 9 Appendix 2: Notes on setting up qosdaemon on Fedora 4
	 9.1 Installing OpenNMS 1.3.2-SNAPSHOT
	 9.2 Running the qosd application

