
Installation Guide
Copyright (c) 2015-2019 The OpenNMS Group, Inc.

OpenNMS Horizon 26.1.3, Last updated 2020-08-04 15:18:05 UTC

Table of Contents
1. Compatibility . 1

2. Setting up a basic OpenNMS Horizon . 2

2.1. Objectives . 2

2.2. Before you begin . 2

2.3. Installing on RHEL . 3

2.4. Installing on Debian. 7

2.5. Installing on Windows . 11

2.6. Run with Docker . 14

3. Monitor isolated location with Minion . 21

3.1. Objectives . 21

3.2. Before you begin. 21

3.3. Installing on RHEL . 21

3.4. Installing on Debian. 25

3.5. Run with Docker . 28

4. Sentinel . 33

4.1. Before you begin. 33

4.2. Installing on RHEL . 33

4.3. Installing on Debian. 36

5. Minion with custom messaging system . 40

5.1. Setup using Apache Kafka . 40

6. Minion with GRPC Strategy . 46

7. Install other versions than stable. 50

8. Setup Minion with a config file. 51

9. Running in non-root environments. 52

9.1. Send ICMP as non-root . 52

9.2. Trap reception as non-root. 52

9.3. Syslog reception as non-root . 53

10. Use R for statistical computing . 54

10.1. Install R on RHEL . 54

10.2. Install R on Debian. 54

11. Using a different Time Series Storage . 55

11.1. RRDtool . 55

11.2. Newts for Time Series data . 58

Chapter 1. Compatibility
OpenNMS Horizon 26.1.3 requires the following component versions:

Component Version Compatibility

OpenNMS Helm 3+

OpenNMS Integration API 0.2.x

Cassandra 3.11.+

Elasticsearch 7.x

Java Development Kit OpenJDK 8, OpenJDK 11

Kafka 1.x - 2.x

PostgreSQL 10.x - 12.x

RRDTool 1.7.x

1

Chapter 2. Setting up a basic OpenNMS
Horizon
The OpenNMS Horizon platform can be installed on multiple OS families. This guide provides
instructions for installing the platform on Red Hat Enterprise Linux (RHEL)-based, Debian-based,
and Microsoft Windows operating systems.

2.1. Objectives
• Installing OpenNMS Horizon components on a single node using the built-in JRobin as time

series storage

• Setup OpenNMS Horizon on recommended operating systems

• Login the Web User Interface and change the default admin password

2.2. Before you begin
The following abbreviations will be used to refer to their respective entry through this
documentation.

Table 1. Operating Systems

RHEL Red Hat Enterprise Linux 7 or higher, CentOS 7 or higher

Debian Debian 9 or higher, Ubuntu 16.04 LTS or higher

Windows Microsoft Windows Server 2012, Windows 10

OpenJDK 11
Development Kit

Installed OpenJDK 11 Development Kit

It is recommended to meet the following requirements:

Table 2. Installation Requirements

Minimal Hardware 2 CPU, 2 GB RAM, 20 GB disk

Operating System RHEL or Debian in a current version is recommended. Please be aware
OpenNMS Horizon is developed and mostly operated on Linux systems.
Community support is limited when you run on Microsoft Windows platform.
On Microsoft Windows the R integration for statistical computation on time
series data is not supported.

Internet Access to {yum,debian}.opennms.org or SourceForge for Microsoft Windows via
https.

2

DNS Setup Please make sure your DNS settings for the OpenNMS server are correct and
the localhost name can be resolved. If there is an incorrect or missing A
Resource Record for the server hostname, OpenNMS might not start correctly.
The Java security manager might not initialize and an RMI class loader
disabled exception will be shown.

Depending on the installed operating system, the path for OpenNMS Horizon is different. If the
instruction refers to ${OPENNMS_HOME}, the path is resolved to the following directories:

Table 3. Directory Structure

RHEL /opt/opennms

Debian /usr/share/opennms

Windows C:\Program Files\opennms

2.3. Installing on RHEL
The following steps will be described:

1. Installation of the opennms meta package which handles all dependencies

2. Initialize PostgreSQL database and configure access

3. Initialize OpenNMS Horizon database and start

4. Log in to the Web User Interface and change default admin password

All commands on the command line interface need to be executed with root permissions.

Step 1: Install OpenNMS Horizon

Add yum repository and import GPG key

dnf -y install https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

Installation of with all built-in dependencies

dnf -y install opennms

The following packages will be automatically installed:

• jicmp6 and jicmp: Java bridge to allow sending ICMP messages from OpenNMS Horizon
repository.

• opennms-core: OpenNMS Horizon core services, e.g. Provisiond, Pollerd and Collectd from
OpenNMS Horizon repository.

• opennms-webapp-jetty: OpenNMS Horizon web application from OpenNMS Horizon repository

3

• postgresql: PostgreSQL database server from distribution repository

• postgresql-libs: PostgreSQL database from distribution repository

With the successful installed packages the OpenNMS Horizon is installed in the following directory
structure:

[root@localhost /opt/opennms]# tree -L 1
.
└── opennms
 ├── bin
 ├── contrib
 ├── data
 ├── deploy
 ├── etc
 ├── jetty-webapps
 ├── lib
 ├── logs -> /var/log/opennms
 ├── share -> /var/opennms
 └── system

We recommend disabling the OpenNMS Horizon repository after installation to
prevent unwanted upgrades while it is running. OpenNMS Horizon requires some
manual steps upon upgrade configuration files or migrate database schemas to a
new version. For this reason, it is recommended to exclude the OpenNMS Horizon
packages from update except when you are planning on performing an upgrade.

dnf config-manager --disable opennms-repo-stable-*

Step 2: Initialize and setup PostgreSQL

Initialization of the PostgreSQL database

postgresql-setup --initdb --unit postgresql

System startup configuration for PostgreSQL

systemctl enable postgresql

Startup PostgreSQL database

systemctl start postgresql

4

Create an opennms database user with a password and create an opennms database which is owned
by the user opennms

su - postgres
createuser -P opennms
createdb -O opennms opennms

Set a password for Postgres super user

psql -c "ALTER USER postgres WITH PASSWORD 'YOUR-POSTGRES-PASSWORD';"
exit

The super user is required to be able to initialize and change the database schema
for installation and updates.

Change the access policy for PostgreSQL

vi /var/lib/pgsql/data/pg_hba.conf

Allow OpenNMS Horizon accessing the database over the local network with a MD5 hashed password

host all all 127.0.0.1/32 md5①
host all all ::1/128 md5①

① Change method from ident to md5 for IPv4 and IPv6 on localhost.

Apply configuration changes for PostgreSQL

systemctl reload postgresql

Configure database access in OpenNMS Horizon

vi ${OPENNMS_HOME}/etc/opennms-datasources.xml

5

Set credentials to access the PostgreSQL database

<jdbc-data-source name="opennms"
 database-name="opennms"①
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/opennms"
 user-name="** YOUR-OPENNMS-USERNAME **"②
 password="** YOUR-OPENNMS-PASSWORD **" />③

<jdbc-data-source name="opennms-admin"
 database-name="template1"
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/template1"
 user-name="postgres"④
 password="** YOUR-POSTGRES-PASSWORD **" />⑤

① Set the database name OpenNMS Horizon should use

② Set the user name to access the opennms database table

③ Set the password to access the opennms database table

④ Set the postgres user for administrative access to PostgreSQL

⑤ Set the password for administrative access to PostgreSQL

Step 3: Initialize and start OpenNMS Horizon

Detect of Java environment and persist in /opt/opennms/etc/java.conf

${OPENNMS_HOME}/bin/runjava -s

Initialize the database and detect system libraries persisted in /opt/opennms/etc/libraries.properties

${OPENNMS_HOME}/bin/install -dis

Configure systemd to start OpenNMS Horizon on system boot

systemctl enable opennms

Start OpenNMS Horizon

systemctl start opennms

Allow connection to the Web UI from your network

firewall-cmd --permanent --add-port=8980/tcp
systemctl reload firewalld

6

If you want to receive SNMP Traps or Syslog messages you have to allow incoming
traffic on your host firewall as well. By default OpenNMS SNMP trap daemon is
listening on 162/udp and Syslog daemon is listening on 10514/udp. The SNMP Trap
daemon is enabled by default, the OpenNMS Syslog daemon is disabled.

Step 4: First Login and change default password

After starting OpenNMS the web application can be accessed on http://<ip-or-fqdn-of-your-
server>:8980/opennms. The default login user is admin and the password is initialized to admin.

1. Open in your browser http://<ip-or-fqdn-of-your-server>:8980/opennms

2. Login with with admin/admin

3. Click in main navigation menu on "admin → Change Password → Change Password"

4. Set as current password admin and set a new password and confirm your newly set password

5. Click "Submit"

6. Logout and login with your new password

Next Steps

Additional information can be found in these follow up documents:

• Getting Started Guide

Learn the first steps to setup, configure, and maintain an OpenNMS Horizon.

• Reference Guide

Find in-depth information on the detecters, monitors, collectors, and configuration files used by
the OpenNMS Horizon platform.

2.4. Installing on Debian
The following steps will be described:

1. Installation of the opennms meta package which handles all dependencies

2. Initialize PostgreSQL database and configure access

3. Initialize OpenNMS Horizon database and start

4. Log in to the Web User Interface and change default admin password

All commands on the command line interface need to be executed with root permissions.

Step 1: Install OpenNMS Horizon

7

http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms

Add apt repository in /etc/apt/sources.list.d/opennms.list and add GPG key

cat << EOF | sudo tee /etc/apt/sources.list.d/opennms.list
deb https://debian.opennms.org stable main
deb-src https://debian.opennms.org stable main
EOF
wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -
apt update

Installation of OpenNMS Horizon with all built-in dependencies

apt -y install opennms

The following packages are required by the opennms package and will be automatically installed:

• jicmp6 and jicmp: Java bridge to allow sending ICMP messages from OpenNMS repository.

• opennms-core: OpenNMS core services, e.g. Provisiond, Pollerd and Collectd from OpenNMS
repository.

• opennms-webapp-jetty: OpenNMS web application from OpenNMS repository

• postgresql: PostgreSQL database server from distribution repository

• postgresql-libs: PostgreSQL database from distribution repository

With the successful installed packages the OpenNMS Horizon is installed in the following directory
structure:

[root@localhost /usr/share/opennms]# tree -L 1
.
└── opennms
 ├── bin
 ├── data
 ├── deploy
 ├── etc -> /etc/opennms
 ├── instances
 ├── jetty-webapps
 ├── lib -> ../java/opennms
 ├── logs -> /var/log/opennms
 ├── share -> /var/lib/opennms
 └── system

We recommend disabling the OpenNMS Horizon repository after installation to
prevent unwanted upgrades while it is running. OpenNMS Horizon requires some
manual steps upon upgrade configuration files or migrate database schemas to a
new version. For this reason, it is recommended to exclude the OpenNMS Horizon
packages from update except when you are planning on performing an upgrade.

8

apt-mark hold libopennms-java \
 libopennmsdeps-java \
 opennms-common \
 opennms-db

Step 2: Initialize and setup PostgreSQL

The Debian package installs the PostgreSQL database and is already initialized. The PostgreSQL
service is already added in the runlevel configuration for system startup.

Startup PostgreSQL database

systemctl start postgresql

Create an opennms database user with a password and create an opennms database which is owned
by the user opennms

su - postgres
createuser -P opennms
createdb -O opennms opennms

Set a password for Postgres super user

psql -c "ALTER USER postgres WITH PASSWORD 'YOUR-POSTGRES-PASSWORD';"
exit

The super user is required to be able to initialize and change the database schema
for installation and updates.

Configure database access in OpenNMS Horizon

vi ${OPENNMS_HOME}/etc/opennms-datasources.xml

9

Set credentials to access the PostgreSQL database

<jdbc-data-source name="opennms"
 database-name="opennms"①
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/opennms"
 user-name="** YOUR-OPENNMS-USERNAME **"②
 password="** YOUR-OPENNMS-PASSWORD **" />③

<jdbc-data-source name="opennms-admin"
 database-name="template1"
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/template1"
 user-name="postgres"④
 password="** YOUR-POSTGRES-PASSWORD **" />⑤

① Set the database name OpenNMS Horizon should use

② Set the user name to access the opennms database table

③ Set the password to access the opennms database table

④ Set the postgres user for administrative access to PostgreSQL

⑤ Set the password for administrative access to PostgreSQL

Step 3: Initialize and start OpenNMS Horizon

Detect of Java environment and persist in /usr/share/opennms/etc/java.conf

${OPENNMS_HOME}/bin/runjava -s

Initialize the database and detect system libraries persisted in /opt/opennms/etc/libraries.properties

${OPENNMS_HOME}/bin/install -dis

Configure systemd to start OpenNMS Horizon on system boot

systemctl enable opennms

Start OpenNMS Horizon

systemctl start opennms

If you want to receive SNMP Traps or Syslog messages you have to allow incoming
traffic on your host firewall as well. By default OpenNMS SNMP trap daemon is
listening on 162/udp and Syslog daemon is listening on 10514/udp. The SNMP Trap
daemon is enabled by default, the OpenNMS Syslog daemon is disabled.

10

Step 4: First Login and change default password

After starting OpenNMS the web application can be accessed on http://<ip-or-fqdn-of-your-
server>:8980/opennms. The default login user is admin and the password is initialized to admin.

1. Open in your browser http://<ip-or-fqdn-of-your-server>:8980/opennms

2. Login with with admin/admin

3. Click in main navigation menu on "admin → Change Password → Change Password"

4. Set as current password admin and set a new password and confirm your newly set password

5. Click "Submit"

6. Logout and login with your new password

Next Steps

Additional information can be found in these follow up documents:

• Getting Started Guide

Learn the first steps to setup, configure, and maintain an OpenNMS Horizon.

• Reference Guide

Find in-depth information on the detecters, monitors, collectors, and configuration files used by
the OpenNMS Horizon platform.

2.5. Installing on Windows
The installer for Microsoft Windows does not handle PostgreSQL and Java dependencies as on Linux
operating systems.

Ensure you have installed Oracle Java Development Kit 8 (JDK) or higher from the
Oracle web page or from the OpenJDK community build site.

The following steps will be described:

1. Install PostgreSQL on Microsoft Windows

2. Install OpenNMS Horizon with GUI installer

3. Initialize PostgreSQL database and configure access

4. Log in to the Web User Interface and change default admin password

It is required to have local administration permission to install OpenNMS Horizon.

To edit OpenNMS configuration files on Microsoft Windows the tool Notepad++ can
deal with the formatting of .property and .xml files.

11

http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
https://www.oracle.com/technetwork/java/index.html
https://www.oracle.com/technetwork/java/index.html
https://github.com/ojdkbuild/ojdkbuild
https://notepad-plus-plus.org/

Step 1: Install PostgreSQL

PostgreSQL is available for Microsoft Windows and latest version can be downloaded from
Download PostgreSQL page. Follow the on-screen instructions of the graphical installer.

The placeholder {PG-VERSION} represents the PostgreSQL version number. Check
the Compatibility Matrix to find a suited PostgreSQL version.

During the installation of PostgreSQL the following information need to be provided:

• Installation directory for PostgreSQL, e.g. C:\Program Files\PostgreSQL{PG-VERSION}

• Password for the database superuser (postgres), this password will be used during the OpenNMS
setup.

• Port to listen for PostgreSQL connections, default is 5432 and can normally be used.

• Locale for the database, keep [Default locale], if you change the locale, OpenNMS may not be
able to initialize the database.

 It is not required to install anything additional from the PostgreSQL Stack Builder.

Step 2: Install OpenNMS with GUI installer

For Microsoft Windows environments download the standalone-opennms-installer-{ONMS-
VERSION}.zip file from the OpenNMS SourceForge repository. Extract the downloaded ZIP file.

 The {ONMS-VERSION} has to be replaced with the latest stable version number.

Start the graphical installer and follow the on screen instructions. The following information has to
be provided:

• Path to Oracle JDK, e.g. C:\Program Files\Java\jdk1.8.0_71

• Installation path for OpenNMS, e.g. C:\Program Files\OpenNMS

• Select packages which has to be installed, the minimum default selection is Core and Docs

• PostgreSQL Database connection

◦ Host: Server with PostgreSQL running, e.g. localhost

◦ Name: Database name for OpenNMS, e.g. opennms

◦ Port: TCP port connecting to PostgreSQL server, e.g. 5432

◦ Username (administrative superuser): PostgreSQL superuser, e.g. postgres

◦ Password (administrative superuser): Password given during PostgreSQL setup for the
superuser

◦ Username (runtime user for opennms): Username to connect to the OpenNMS database, e.g.
opennms

◦ Password (runtime user for opennms): Password to connect to the OpenNMS database, e.g.
opennms

12

http://www.enterprisedb.com/products-services-training/pgdownload#windows
https://wiki.opennms.org/wiki/Installation_and_Upgrades#Compatibility_Matrix
http://sourceforge.net/projects/opennms/files/OpenNMS/

• Configure a discovery range for an initial node discovery. If you don’t want any discovery set
begin and end to the same unreachable address.

Choose secure passwords for all database users and don’t use the example
passwords above in production.

Step 3: Configure PostgreSQL access for OpenNMS Horizon

Set credentials to access the PostgreSQL database

<jdbc-data-source name="opennms"
 database-name="opennms"①
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/opennms"
 user-name="** YOUR-OPENNMS-USERNAME **"②
 password="** YOUR-OPENNMS-PASSWORD **" />③

<jdbc-data-source name="opennms-admin"
 database-name="template1"
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/template1"
 user-name="postgres"④
 password="** YOUR-POSTGRES-PASSWORD **" />⑤

① Set the database name OpenNMS Horizon should use

② Set the user name to access the opennms database table

③ Set the password to access the opennms database table

④ Set the postgres user for administrative access to PostgreSQL

⑤ Set the password for administrative access to PostgreSQL

After setting the username and passwords in opennms-datasources.xml re-run the graphical installer
and also initialize the database. OpenNMS can be started and stopped with the start.bat and
stop.bat script located in %OPENNMS_HOME%\bin directory.

The Wiki article Configuring OpenNMS as Windows Service describes how to
create a Windows Service from the start.bat files. There is also a Java Wrapper
which allows to install Java applications as Windows Service.

Step 4: First Login and change default password

After starting OpenNMS the web application can be accessed on http://<ip-or-fqdn-of-your-
server>:8980/opennms. The default login user is admin and the password is initialized to admin.

1. Open in your browser http://<ip-or-fqdn-of-your-server>:8980/opennms

2. Login with with admin/admin

3. Click in main navigation menu on "admin → Change Password → Change Password"

13

http://www.opennms.org/wiki/Configuring_openNMS_as_Windows_Service
http://yajsw.sourceforge.net/#mozTocId527639
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms

4. Set as current password admin and set a new password and confirm your newly set password

5. Click "Submit"

6. Logout and login with your new password

Next Steps

Additional information can be found in these follow up documents:

• Getting Started Guide

Learn the first steps to setup, configure, and maintain an OpenNMS Horizon.

• Reference Guide

Find in-depth information on the detecters, monitors, collectors, and configuration files used by
the OpenNMS Horizon platform.

2.6. Run with Docker
Modern infrastructure allows you to deploy and run workloads in containers. OpenNMS Horizon
provides and publishes container images on DockerHub.

We don’t install all available plugins in our published Docker image. If you want to
customize and maintain your own image, you can find the Dockerfiles in our
source repository.

2.6.1. Objectives

• Run OpenNMS Horizon using Docker Compose with a basic setup and PostgreSQL on your local
system as a quickstart

• Persist RRD files from OpenNMS Horizon and PostgreSQL in a volume

• Introduce a reference with all available configuration and mount conventions for more
advanced setups

2.6.2. Before you begin

You must have at least the following components installed:

• Current stable Docker release installed, e.g., installed from Docker Documentation

• Current stable Docker Compose installed, e.g., installed from Docker Compose instructions You
should have a basic knowledge of Docker, Docker Compose with networking, persisting files and
mounting directories

2.6.3. Quickstart service stack

14

https://hub.docker.com/u/opennms
https://github.com/OpenNMS/opennms/tree/develop/opennms-container
https://docs.docker.com/
https://docs.docker.com/compose/install/

Step 1: Create service stack for PostgreSQL and OpenNMS Horizon

The first section describes how to set up OpenNMS Horizon service stack in a docker-compose.yml
file. Create a project directory with mkdir opennms-horizon and create a docker-compose.yml file in
that directory with the following content:

15

version: '3'

volumes:
 data-postgres: {}①
 data-opennms: {}②

services:
 database:③
 image: postgres:12④
 container_name: database⑤
 environment:⑥
 - TZ=Europe/Berlin
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 volumes:⑦
 - data-postgres:/var/lib/postgresql/data
 healthcheck:⑧
 test: ["CMD-SHELL", "pg_isready -U postgres"]
 interval: 10s
 timeout: 30s
 retries: 3

 horizon:
 image: opennms/horizon:26.1.3⑨
 container_name: horizon
 environment:⑩
 - TZ=Europe/Berlin
 - POSTGRES_HOST=database
 - POSTGRES_PORT=5432
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 - OPENNMS_DBNAME=opennms
 - OPENNMS_DBUSER=opennms
 - OPENNMS_DBPASS=opennms
 volumes:
 - data-opennms:/opt/opennms/share/rrd⑪
 - ./overlay:/opt/opennms-overlay⑫
 command: ["-s"]
 ports:⑬
 - "8980:8980/tcp"
 - "8101:8101/tcp"
 - "61616:61616/tcp"
 healthcheck:⑭
 test: ["CMD", "curl", "-f", "-I", "http://localhost:8980/opennms/login.jsp"]
 interval: 1m
 timeout: 5s
 retries: 3

① Volume definition to persist the PostgreSQL database permanently

16

② Volume definition to persist the RRD files from OpenNMS Horizon permanently

③ Service name database for the PostgreSQL instance

④ Image reference for the vanilla PostgreSQL Docker image with a fixed version

⑤ Friendly container name

⑥ Environment variables to initialize a postgres user with a password

⑦ Assign volume to persist the PostgreSQL database

⑧ Create a health check for the PostgreSQL database

⑨ Image reference for the OpenNMS Horizon container image using the latest stable version

⑩ Set up a database connection using the postgres root user and initialize an opennms database with
user and credentials

⑪ Assign the volume to persist the RRD files permanently

⑫ Mount the configuration files to make them accessible in a local directory

⑬ Publish ports for the web user interface, Karaf Shell and ActiveMQ

⑭ Create a health check against the login page from OpenNMS Horizon

Step 2: Start the service stack

cd opennms-horizon
docker-compose up -d

The startup and download can take a while; you can use the docker-compose ps
command and wait until the health check for the horizon service is up (healthy).

Step 3: Log in to the Web UI

After download and startup, verify that you can access the web user interface by going to
http://localhost:8980. The default login is admin with password admin.

 Please immediately change your admin account and set a strong password.

2.6.4. Configuration Reference

Startup Arguments

Argume
nt

Description

-h Display help with available arguments.

-f Start the process in the foreground and use existing data and configuration.

-i One-time command to initialize or update database and configuration files and do NOT
start.

17

http://localhost:8980

Argume
nt

Description

-s Command to initialize or update database and configuration files and start OpenNMS in
the foreground.

-t One-time command to run the config-tester against the configuration.

Environment Variables

Table 4. Java options

Environment variable Description Required Default value

JAVA_OPTS Allows to add
additional Java options

optional -

Table 5. PostgreSQL connection configuration in opennms-datasources.xml

Environment
variable

Description Requ
ired

Default value

OPENNMS_DBNAME Database name used for OpenNMS
Horizon

requi
red

-

OPENNMS_DBUSER Username with access to the database requi
red

-

OPENNMS_DBPASS Password for user with acccess to the
database

requi
red

-

POSTGRES_HOST Host with the PostgreSQL server instance
running

requi
red

-

POSTGRES_PORT PostgreSQL server port optio
nal

5432

POSTGRES_USER PostgreSQL super user to initialize
database schema specified in
OPENNMS_DBNAME

requi
red

-

POSTGRES_PASSWORD PostgreSQL super user password requi
red

-

OPENNMS_DATABASE_CONN
ECTION_POOLFACTORY

Database connection pool factory optio
nal

org.opennms.core.db.Hika
riCPConnectionFactory

OPENNMS_DATABASE_CONN
ECTION_IDLETIMEOUT

Database connection pool idle timeout optio
nal

600

OPENNMS_DATABASE_CONN
ECTION_LOGINTIMEOUT

Database connection pool login timeout optio
nal

3

18

Environment
variable

Description Requ
ired

Default value

OPENNMS_DATABASE_CONN
ECTION_MINPOOL

Minimal connection pool size optio
nal

50

OPENNMS_DATABASE_CONN
ECTION_MAXPOOL

Maximum connection pool size optio
nal

50

OPENNMS_DATABASE_CONN
ECTION_MAXSIZE

Maximum connections optio
nal

50

Table 6. Timeseries storage configuration in opennms.properties.d/_confd.timeseries.properties

Environment
variable

Description Requ
ired

Default value

OPENNMS_TIMESERIE
S_STRATEGY

Used Timeseries storage strategy optio
nal

rrd

OPENNMS_RRD_STORE
BYFOREIGNSOURCE

Store timeseries data by foreign
source instead of the database node
id

optio
nal

true

OPENNMS_RRD_STRAT
EGYCLASS

Java RRD Strategy class optio
nal

org.opennms.netmgt.rrd.rrdtool.
MultithreadedJniRrdStrategy

OPENNMS_RRD_INTER
FACEJAR

Java RRD Interface library optio
nal

/usr/share/java/jrrd2.jar

OPENNMS_LIBRARY_J
RRD2

JRRD2 libray path optio
nal

/usr/lib64/libjrrd2.so

Table 7. SNMP Trap receiver configuration in trapd-configuration.xml

Environment variable Description Requir
ed

Default
value

OPENNMS_TRAPD_ADDRESS Listen interface for SNMP Trapd option
al

*

OPENNMS_TRAPD_PORT Port to listen for SNMP Traps option
al

1162

OPENNMS_TRAPD_NEWSUSPEC
TONTRAP

Create new suspect event based Trap recepient for
unknown devices

option
al

false

OPENNMS_TRAPD_INCLUDERA
WMESSAGE

Preserve raw messages in SNMP Traps option
al

false

OPENNMS_TRAPD_THREADS Set maximum thread size to process SNMP Traps option
al

0

19

Environment variable Description Requir
ed

Default
value

OPENNMS_TRAPD_QUEUESIZE Set maximum queue for SNMP Trap processing option
al

10000

OPENNMS_TRAPD_BATCHSIZE Set batch size for SNMP Trap processing option
al

1000

OPENNMS_TRAPD_BATCHINTE
RVAL

Set batch processing interval in milliseconds option
al

500

Table 8. Karaf Shell configuration in org.apache.karaf.shell.cfg

Environment
variable

Description Require
d

Default
value

OPENNMS_karaf_SSH_HOST Listen interface for Karaf shell optional 0.0.0.0

OPENNMS_karaf_SSH_PORT SSH Port for Karaf shell optional 8101

Table 9. Cassandra and Newts configuration in opennms.properties.d/_confd.newts.properties

Environment
variable

Description Requir
ed

Default
value

REPLICATION_FACTOR Set Cassandra replication factor for the newts
keyspace if Newts is used

optiona
l

1

OPENNMS_CASSANDRA_HOS
TNAMES

A comma separated list with Cassandra hosts for
Newts

optiona
l

localhost

OPENNMS_CASSANDRA_KEY
SPACE

Name of the keyspace used by Newts optiona
l

newts

OPENNMS_CASSANDRA_POR
T

Cassandra server port optiona
l

9042

OPENNMS_CASSANDRA_USE
RNAME

Username with access to Cassandra optiona
l

cassandra

OPENNMS_CASSANDRA_PAS
SWORD

Password for user with access to Cassandra optiona
l

cassandra

Directory Conventions

Mountpoint Description

/opt/opennms-
overlay

Allows to overwrite files relative to /opt/opennms

/opennms-data Directory with RRDTool/JRobin files and generated PDF reports sent to the file
system

20

Chapter 3. Monitor isolated location with
Minion
This section describes how to install the Minion to monitor devices and services in a location which
can’t be reached from an OpenNMS Horizon instance.

3.1. Objectives
• Install a Minion to monitor devices and services unreachable from an OpenNMS Horizon

instance

• Configure an authenticated unencrypted communication between Minion and OpenNMS
Horizon using ActiveMQ and REST

3.2. Before you begin
Setting up a OpenNMS Horizon with Minions requires:

• Instance of OpenNMS Horizon needs to be exact same version as Minion packages

• Packages are available as RPMs for RHEL-based systems and DEBs for Debian-based systems

• OpenNMS Horizon needs to be installed and communication to the REST (8980/tcp) and
ActiveMQ (616161/tcp) endpoints is possible

Depending on the installed operating system, the path for Minion is different. If the instruction
refers to ${MINION_HOME}, the path is resolved to the following directories:

Table 10. Directory Structure

RHEL /opt/minion

Debian /usr/share/minion

3.3. Installing on RHEL
1. Setup OpenNMS Horizon to allow Minion communication

2. Installation of the opennms-minion meta package which handles all dependencies

3. Starting Minion and access the Karaf console over SSH

4. Configure Minion to communicate with OpenNMS Horizon

5. Verify the connectivity between Minion and OpenNMS Horizon

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Horizon to allow Minion communication

Communication between a Minion and OpenNMS Horizon uses REST API and a messaging system,

21

by default ActiveMQ. An authenticated user in OpenNMS Horizon is required for these
communication channels. The security role ROLE_MINION includes the minimal amount of
permissions required for a Minion to operate.

As an example we use in this guide the user name minion with password minion.
Change the credentials accordingly.

Create a user minion in the OpenNMS Horizon web user interface

1. Login the web user interface with a user which has administrative permissions

2. Go in the main navigation to "Login Name → Configure OpenNMS → Configure Users, Groups and
On-Call Roles → Configure Users"

3. Add a new user with login name minion and password minion and click Ok

4. Assign the security role ROLE_MINION, optional fill in a comment for what location and
purpose the user is used for and click Finish

5. The minion user should now be listed in the User List

Configure ActiveMQ to allow communication on public network interface

vi ${OPENNMS_HOME}/etc/opennms-activemq.xml

Remove comments for the transport connector listening on 0.0.0.0 and save

<transportConnector name="openwire" uri="tcp://0.0.0.0:61616?useJmx=false
&maximumConnections=1000&wireformat.maxFrameSize=104857600"/>

Restart OpenNMS Horizon

systemctl restart opennms

Verify if port 61616/tcp is listening on all interfaces

ss -lnpt sport = :61616
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:61616 *:* users:(("java",pid=1,fd=706))

Step 2: Install the repository and Minion package

Connect with SSH to your remote RHEL system where you need a Minion to be installed.

Install the Yum repository

dnf -y install https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

22

Install the Minion package

dnf -y install opennms-minion

With the successful installed packages the Minion is installed in the following directory structure:

[root@localhost /opt/minion]# $ tree -L 1
.
├── bin
├── deploy
├── etc
├── lib
├── repositories
└── system

The Minion’s startup configuration can be changed by editing the /etc/sysconfig/minion file. It
allows to override the defaults used at startup including:

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Minion and test access to Karaf Shell

Configure systemd to start Minion on system boot

systemctl enable minion

Startup Minion

systemctl start minion

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8201 admin@localhost

Step 4: Configure Minion to communicate with OpenNMS Horizon

Login to the Karaf Shell on the system where your Minion is installed with SSH

ssh -p 8201 admin@localhost

23

Configure the Minion’s location and endpoint URLs for communication with OpenNMS Horizon

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit org.opennms.minion.controller
admin@minion()> config:property-set location Office-Pittsboro
admin@minion()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@minion()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@minion()> config:update

Include the failover: portion of the broker URL to allow the Minion to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.

Configure the credentials to use when communicating with OpenNMS Horizon

admin@minion()> opennms:scv-set opennms.http minion minion
admin@minion()> opennms:scv-set opennms.broker minion minion

Another way to configure credentials is to use the scvcli utility in your Minion bin
directory.

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.http minion minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.broker minion minion

Restart the Minion after updating the credentials

[root@localhost /root]# $ systemctl restart minion

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Minion

ssh -p 8201 admin@localhost

24

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Verify connectivity with the OpenNMS Horizon

admin@minion()> minion:ping
Connecting to ReST...
OK
Connecting to Broker...
OK
admin@minion()>

3.4. Installing on Debian
1. Setup OpenNMS Horizon to allow Minion communication

2. Installation of the opennms-minion meta package which handles all dependencies

3. Starting Minion and access the Karaf console over SSH

4. Configure Minion to communicate with OpenNMS Horizon

5. Verify the connectivity between Minion and OpenNMS Horizon

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Horizon to allow Minion communication

Communication between a Minion and OpenNMS Horizon uses REST API and a messaging system,
by default ActiveMQ. An authenticated user in OpenNMS Horizon is required for these
communication channels. The security role ROLE_MINION includes the minimal amount of
permissions required for a Minion to operate.

As an example we use in this guide the user name minion with password minion.
Change the credentials accordingly.

Create a user minion in the OpenNMS Horizon web user interface

1. Login the web user interface with a user which has administrative permissions

2. Go in the main navigation to "Login Name → Configure OpenNMS → Configure Users, Groups and
On-Call Roles → Configure Users"

3. Add a new user with login name minion and password minion and click Ok

4. Assign the security role ROLE_MINION, optional fill in a comment for what location and
purpose the user is used for and click Finish

5. The minion user should now be listed in the User List

Configure ActiveMQ to allow communication on public network interface

vi ${OPENNMS_HOME}/etc/opennms-activemq.xml

25

Remove comments for the transport connector listening on 0.0.0.0 and save

<transportConnector name="openwire" uri="tcp://0.0.0.0:61616?useJmx=false
&maximumConnections=1000&wireformat.maxFrameSize=104857600"/>

Restart OpenNMS Horizon

systemctl restart opennms

Verify if port 61616/tcp is listening on all interfaces

ss -lnpt sport = :61616
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:61616 *:* users:(("java",pid=1,fd=706))

Step 2: Install the repository and Minion package

Add apt repository in /etc/apt/sources.list.d/opennms.list and add GPG key

echo 'deb https://debian.opennms.org stable main \
 deb-src https://debian.opennms.org stable main' >
/etc/apt/sources.list.d/opennms.list
wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -
apt update

Install the Minion package

apt -y install opennms-minion

The Minion packages setup the following directory structure:

[root@localhost /usr/share/minion]# $ tree -L 1
.
├── bin
├── deploy
├── etc
├── lib
├── repositories
└── system

Additionally, symbolic links are set up pointing to /etc/minion and /var/log/minion to match
Debian’s expected filesystem layout.

The Minion’s startup configuration can be changed by editing the /etc/default/minion file. It allows
to override the defaults used at startup including:

26

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Minion and test access to Karaf Shell

Configure systemd to start Minion on system boot

systemctl enable minion

Startup Minion

systemctl start minion

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8201 admin@localhost

Step 4: Configure Minion to communicate with OpenNMS Horizon

Login to the Karaf Shell on the system where your Minion is installed with SSH

ssh -p 8201 admin@localhost

Configure the Minion’s location and endpoint URLs for communication with OpenNMS Horizon

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit org.opennms.minion.controller
admin@minion()> config:property-set location Office-Pittsboro
admin@minion()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@minion()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@minion()> config:update

Include the failover: portion of the broker URL to allow the Minion to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.

Configure the credentials to use when communicating with OpenNMS Horizon

admin@minion()> opennms:scv-set opennms.http minion minion
admin@minion()> opennms:scv-set opennms.broker minion minion

27

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Another way to configure credentials is to use the scvcli utility in your Minion bin
directory.

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.http minion minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.broker minion minion

Restart the Minion after updating the credentials

[root@localhost /root]# $ systemctl restart minion

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Minion

ssh -p 8201 admin@localhost

Verify connectivity with the OpenNMS Horizon

admin@minion()> minion:ping
Connecting to ReST...
OK
Connecting to Broker...
OK
admin@minion()>

3.5. Run with Docker
Modern infrastructure allows you to deploy and run workloads in containers. OpenNMS Horizon
provides and publishes container images on DockerHub.

3.5.1. Objectives

• Run and configure a Minion in, and connect it to, the OpenNMS Horizon instance using
environment variables

• Introduce a reference with all available configuration and mount conventions for more
advanced setups

3.5.2. Before you begin

You must have at least the following components installed:

28

https://hub.docker.com/u/opennms

• Current stable Docker release installed, e.g., installed from Docker Documentation

• Current stable Docker Compose installed, e.g., installed from Docker Compose instructions You
should have a basic knowledge of Docker, Docker Compose with networking, persisting files and
mounting directories OpenNMS Horizon is configured to accept connections via ActiveMQ and a
Minion user with ROLE_MINION The Minion can connect to OpenNMS Horizon with port
61616/TCP for ActiveMQ and REST on port 8980/TCP

3.5.3. Quickstart service stack

Step 1: Create service stack with a Minion

Create a project directory with mkdir opennms-minion and create a docker-compose.yml file in that
directory with the following content:

version: '3'

services:
 minion:
 image: opennms/minion:26.1.3
 container_name: minion①
 network_mode: host②
 environment:
 - TZ=Europe/Berlin③
 - MINION_ID=my-minion④
 - MINION_LOCATION=my-location⑤
 - OPENNMS_BROKER_URL=failover:tcp://horizon-instance:61616⑥
 - OPENNMS_BROKER_USER=minion-user⑦
 - OPENNMS_BROKER_PASS=minion-password
 - OPENNMS_HTTP_URL=http://horizon-instance:8980/opennms⑧
 - OPENNMS_HTTP_USER=minion-user⑨
 - OPENNMS_HTTP_PASS=minion-password
 command: ["-f"]

① Friendly container name

② If you process UDP data like SNMP traps, Syslogs or flows, network_mode: host ensures the UDP
source addresses are not modified

③ Time zone for the Minion

④ A defined identifier for this Minion. If not set, a unique user identifier (UUID) will be generated

⑤ The name of the location of the Minion and the connection to the ActiveMQ broker running in
OpenNMS Horizon

⑥ ActiveMQ broker endpoint from OpenNMS Horizon

⑦ Authentication for ActiveMQ broker

⑧ REST endpoint to connect to the OpenNMS Horizon instance

⑨ Authentication for the REST endpoint

29

https://docs.docker.com/
https://docs.docker.com/compose/install/

In this example we haven’t set credentials to connect the Minion via REST and the
ActiveMQ Message Broker. The Minion will fall back and uses the default
admin/admin credentials for communication. Permissions for ActiveMQ and REST
are assigned with the role ROLE_MINION on the OpenNMS Horizon instance.

If you process UDP data and you don’t use network_mode: host, the UDP source
address from your packets will be modified from Docker. The source address is
your Docker internal gateway instead of the source address of your device. Source
addresses associate the Syslog or SNMP traps to the nodes in the OpenNMS
database. You can use an isolated network and publish ports as usual if you don’t
receive UDP-based monitoring data. If you don’t use network_mode: host you have
to publish the listener ports manually.

Step 2: Start the service stack and test the functionality

cd opennms-minion
docker-compose up -d

Step 3: Run Minion Health Check

Log in to the Minion Karaf Shell and run the health check

ssh admin@localhost -p 8201

admin@minion> health:check
Verifying the health of the container

Connecting to OpenNMS ReST API [Success]
Verifying installed bundles [Success]
Connecting to JMS Broker [Success]

=> Everything is awesome

 The default admin password for the Minion Karaf Shell is admin.

Step 4: Verify status in the web UI

• Log in as admin in the OpenNMS Horizon web interface

• Configure OpenNMS → Manage Minions. The Minion should be registered and the status should
be up

• Verify that Minion is provisioned automatically by going to Info → Nodes and selecting the
Minion. The services JMX-Minion, Minion-Heartbeat and Minion-RPC should be up and
provisioned on the local loop-back interface

30

3.5.4. Startup Arguments

Argume
nt

Description

-h Display help with available arguments.

-c Start Minion and use environment credentials to register Minion on OpenNMS Horizon.

-s One-time command to initialze an encrypted keystore file with credentials in
/keystory/scv.jce.

-f Initialize and start Minion in foreground.

3.5.5. Environment Variables

Table 11. Generic Minion settings

Environment
variable

Description Require
d

Default value

MINION_ID Unique Minion identifier optional generated UUID

MINION_LOCATION Name of the location the Minion is associated required -

Table 12. Settings when ActiveMQ is used

Environment
variable

Description Require
d

Default
value

OPENNMS_HTTP_URL Web user interface base URL for REST required -

OPENNMS_HTTP_USER User name for the ReST API optional admin

OPENNMS_HTTP_PASS Password for the ReST API optional admin

OPENNMS_BROKER_URL ActiveMQ broker URL required -

OPENNMS_BROKER_USER Username for ActiveMQ authentication optional admin

OPENNMS_BROKER_PASS Password for ActiveMQ authentication optional admin

Apache Kafka Configuration

If you want to use Apache Kafka the environment variable names are converted with a prefix
convention:

• Prefix KAFKA_RPC_ will be written to org.opennms.core.ipc.rpc.kafka.cfg

• Prefix KAFKA_SINK_ will be written to org.opennms.core.ipc.sink.kafka.cfg

• Everything behind will be converted to lower case and _ is replaced with .

As an example:

31

environment:
 - KAFKA_RPC_BOOTSTRAP_SERVERS=192.168.1.1,192.168.1.2

This will create the file org.opennms.core.ipc.rpc.kafka.cfg with the content:

bootstrap.servers=192.168.1.1,192.168.1.2

3.5.6. Directory Conventions

Mountpoint Description

/opt/minion-etc-overlay Allows to overwrite files relative to /opt/minion/etc

/keystore Directory with credentials for encrypted keystore file

32

Chapter 4. Sentinel
This section describes how to install the Sentinel to scale individual components of OpenNMS
Horizon.

At the moment only flows can be distributed using Sentinel. In the future more
components will follow.

4.1. Before you begin
Setting up a OpenNMS Horizon with Sentinel requires:

• Instance of OpenNMS Horizon needs to be exact same version as Sentinel packages

• Packages are available as RPMs for RHEL-based systems and DEBs for Debian-based systems

• OpenNMS Horizon needs to be installed and communication to the REST (8980/tcp) and
ActiveMQ (616161/tcp) endpoints is possible

• At least one Minion needs to be installed and successful communicate with the OpenNMS
Horizon

Depending on the installed operating system, the path for Sentinel is different. If the instruction
refers to ${SENTINEL_HOME}, the path is resolved to the following directories:

Table 13. Directory Structure

RHEL /opt/sentinel

Debian /usr/share/sentinel

4.2. Installing on RHEL
1. Setup OpenNMS Horizon to allow Sentinel communication

2. Installation of the opennms-sentinel meta package which handles all dependencies

3. Starting Sentinel and access the Karaf console over SSH

4. Configure Sentinel to communicate with OpenNMS Horizon

5. Verify the connectivity between Sentinel and OpenNMS Horizon

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Horizon to allow Sentinel communication

This step is exactly the same as for Minion. Even the role name ROLE_MINION can be used, as there
does not exist a dedicated role ROLE_SENTINEL yet.

Therefore, please refer to section Setup OpenNMS Horizon to allow Minion communication.

33

Even if we have to configure the communication to the OpenNMS Horizon exactly
the same as for Minion no ReST requests are made and may be removed at a later
state.

Step 2: Install the repository and Sentinel package

Connect with SSH to your remote RHEL system where the Sentinel should be installed.

Install the Yum repository

dnf install -y https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

Install the Sentinel package

dnf -y install opennms-sentinel

With the successful installed packages the Sentinel is installed in the following directory structure:

[root@localhost /opt/sentinel]# $ tree -L 1
.
|-- bin
|-- COPYING
|-- data
|-- deploy
|-- etc
|-- lib
`-- system

The Sentinel’s startup configuration can be changed by editing the /etc/sysconfig/sentinel file. It
allows to override the defaults used at startup including:

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Sentinel and test access to Karaf Shell

Configure systemd to start Sentinel on system boot

systemctl enable sentinel

Startup Sentinel

systemctl start sentinel

34

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8301 admin@localhost

Step 4: Configure Sentinel to communicate with OpenNMS Horizon

Login to the Karaf Shell on the system where your Sentinel is installed with SSH

ssh -p 8301 admin@localhost

Configure the Sentinel’s location and endpoint URLs for communication with OpenNMS Horizon

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@sentinel()> config:edit org.opennms.sentinel.controller
admin@sentinel()> config:property-set location Office-Pittsboro
admin@sentinel()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@sentinel()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@sentinel()> config:update

Include the failover: portion of the broker URL to allow the Sentinel to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.

Even if the id, location and http-url must be set the same ways as for Minion, this
may change in future versions of Sentinel.

Configure the credentials to use when communicating with OpenNMS Horizon

admin@sentinel()> opennms:scv-set opennms.http minion minion
admin@sentinel()> opennms:scv-set opennms.broker minion minion

Username and password is explicitly set to minion as it is assumed that they share the same
credentials and roles.

Another way to configure credentials is to use the scvcli utility in your Sentinel bin
directory.

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/sentinel
[root@localhost /opt/sentinel]# $./bin/scvcli set opennms.http minion minion
[root@localhost /opt/sentinel]# $./bin/scvcli set opennms.broker minion minion

35

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Restart the Sentinel after updating the credentials

[root@localhost /root]# $ systemctl restart sentinel

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Sentinel

ssh -p 8301 admin@localhost

Verify connectivity with the OpenNMS Horizon

admin@sentinel()> feature:install sentinel-core
admin@sentinel> opennms:health-check
Verifying the health of the container

Verifying installed bundles [Success]
Connecting to OpenNMS ReST API [Success]

=> Everything is awesome
admin@sentinel()>

The opennms:health-check command is a newer and more flexibel version of the
original minion:ping command. Therefore on Sentinel there is no equivalent such
as sentinel:ping.

4.3. Installing on Debian
1. Setup OpenNMS Horizon to allow Sentinel communication

2. Installation of the opennms-sentinel meta package which handles all dependencies

3. Starting Sentinel and access the Karaf console over SSH

4. Configure Sentinel to communicate with OpenNMS Horizon

5. Verify the connectivity between Sentinel and OpenNMS Horizon

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Horizon to allow Sentinel communication

This step is exactly the same as for Minion. Even the role name ROLE_MINION can be used, as there
does not exist a dedicated role ROLE_SENTINEL yet.

Therefore, please refer to section Setup OpenNMS Horizon to allow Minion communication.

36

Even if we have to configure the communication to the OpenNMS Horizon exactly
the same as for Minion no ReST requests are made and may be removed at a later
state.

Step 2: Install the repository and Sentinel package

Add apt repository in /etc/apt/sources.list.d/opennms.list and add GPG key

echo 'deb https://debian.opennms.org stable main \
 deb-src https://debian.opennms.org branches/features-sentinel main' >
/etc/apt/sources.list.d/opennms.list
wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -
apt update

Install the Sentinel package

apt -y install opennms-sentinel

The Sentinel packages setup the following directory structure:

[root@localhost /usr/share/sentinel]# $ tree -L 1
.
|-- bin
|-- COPYING
|-- data
|-- debian
|-- deploy
|-- etc
|-- lib
`-- system

Additionally, symbolic links are set up pointing to /etc/sentinel and /var/log/sentinel to match
Debian’s expected filesystem layout.

The Minion’s startup configuration can be changed by editing the /etc/default/sentinel file. It
allows to override the defaults used at startup including:

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Sentinel and test access to Karaf Shell

Configure systemd to start Sentinel on system boot

systemctl enable sentinel

37

Startup Sentinel

systemctl start sentinel

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8301 admin@localhost

Step 4: Configure Sentinel to communicate with OpenNMS Horizon

Login to the Karaf Shell on the system where your Sentinel is installed with SSH

ssh -p 8301 admin@localhost

Configure the Sentinel’s location and endpoint URLs for communication with OpenNMS Horizon

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@sentinel()> config:edit org.opennms.sentinel.controller
admin@sentinel()> config:property-set location Office-Pittsboro
admin@sentinel()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@sentinel()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@sentinel()> config:update

Include the failover: portion of the broker URL to allow the Sentinel to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.

Even if the id, location and http-url must be set the same ways as for Minion, this
may change in future versions of Sentinel.

Configure the credentials to use when communicating with OpenNMS Horizon

admin@sentinel()> opennms:scv-set opennms.http minion minion
admin@sentinel()> opennms:scv-set opennms.broker minion minion

Username and password is explicitly set to minion as it is assumed that they share the same
credentials and roles.

Another way to configure credentials is to use the scvcli utility in your Sentinel bin
directory.

38

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/sentinel
[root@localhost /usr/share/sentinel]# $./bin/scvcli set opennms.http minion minion
[root@localhost /usr/share/sentinel]# $./bin/scvcli set opennms.broker minion minion

Restart the Sentinel after updating the credentials

[root@localhost /root]# $ systemctl restart sentinel

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Sentinel

ssh -p 8301 admin@localhost

Verify connectivity with the OpenNMS Horizon

admin@sentinel()> feature:install sentinel-core
admin@sentinel> opennms:health-check
Verifying the health of the container

Verifying installed bundles [Success]
Connecting to OpenNMS ReST API [Success]

=> Everything is awesome
admin@sentinel()>

The opennms:health-check command is a newer and more flexibel version of the
original minion:ping command. Therefore on Sentinel there is no equivalent such
as sentinel:ping.

39

Chapter 5. Minion with custom messaging
system
Minions and OpenNMS Horizon communicate via a messaging system. By default, an embedded
ActiveMQ broker is used. OpenNMS Horizon is designed to work with different messaging systems
and based on the system requirements or workload, an alternative to ActiveMQ can be used. In
general, the communication between OpenNMS Horizon and Minion is provided by two patterns:

• Remote Producer Calls (RPCs) are used to issue specific tasks (such as a request to poll or
perform data collection) from an OpenNMS Horizon instance to a Minion in a remote location.

◦ These calls are normally self-contained and include all of the meta-data and information
required for them to be performed.

• The Sink pattern is used to send unsolicited messages (i.e. Syslog, SNMP Traps or Flows) received
from a Minion to an OpenNMS Horizon instance

High level components used for communication between OpenNMS Horizon and Minions

This section describes how you can setup OpenNMS Horizon to use other supported messaging
systems for the communication with Minions.

5.1. Setup using Apache Kafka
This section describes how to use Apache Kafka as a messaging system between OpenNMS Horizon
and Minions in a remote location.

5.1.1. Objectives

• Configure OpenNMS Horizon to forward RPC to a Minion

• Configure Minion to forward messages over the Sink component to an OpenNMS Horizon
instance

• Disable the embedded Active MQ message broker on the Minion.

• Verify the functionality on the Minion using the health:check command and ensure the Minion
is registered and monitored in the OpenNMS Horizon web interface

40

5.1.2. Before you begin

The following requirements should be satisfied before you can start with this tutorial:

• At least a minimal Kafka system up and running If you want to start in a lab, the Apache Kafka
Quickstart guide is a good starting point

• An instance running with OpenNMS Horizon and at least one deployed Minion

• Communication between OpenNMS Horizon, Minion and Apache Kafka is possible on TCP port
9092

Network topology used for the following configuration example

The example is used to describe how the components need to be configured. IP
addresses and hostnames need to be adjusted accordingly.

You can add more than one Kafka server to the configuration. The driver will
attempt to connect to the first entry. If that is successful the whole broker topology
will be discovered and will be known by the client. The other entries are only used
if the connection to the first entry fails.

5.1.3. Configure OpenNMS Horizon

Step 1: Set Kafka as RPC strategy and add Kafka server

cat <<EOF >${OPENNMS_HOME}/etc/opennms.properties.d/kafka.properties
org.opennms.core.ipc.rpc.strategy=kafka
org.opennms.core.ipc.rpc.kafka.bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-
3:9092
EOF

41

https://kafka.apache.org/20/documentation.html#quickstart
https://kafka.apache.org/20/documentation.html#quickstart

Step 2: Set Kafka as Sink strategy and add Kafka server

cat <<EOF >>${OPENNMS_HOME}/etc/opennms.properties.d/kafka.properties
Ensure that messages are not consumed from Kafka until the system has fully
initialized
org.opennms.core.ipc.sink.initialSleepTime=60000
org.opennms.core.ipc.sink.strategy=kafka
org.opennms.core.ipc.sink.kafka.bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-
3:9092
EOF

Step 3: Restart OpenNMS Horizon

systemctl restart opennms

5.1.4. Configure Minion

Step 1: Disable ActiveMQ for RPC and Sink

Disable ActiveMQ on Minion startup

cat <<EOF >${MINION_HOME}/etc/featuresBoot.d/disable-activemq.boot
!minion-jms
!opennms-core-ipc-rpc-jms
!opennms-core-ipc-sink-camel
EOF

Step 2: Enable Kafka for RPC and Sink

cat <<EOF >${MINION_HOME}/etc/featuresBoot.d/kafka.boot
opennms-core-ipc-rpc-kafka
opennms-core-ipc-sink-kafka
EOF

Step 3: Configure Kafka server

Add Kafka server for RPC communication

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.rpc.kafka.cfg
bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-3:9092
acks=1
EOF

42

Add Kafka server for Sink communication

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.sink.kafka.cfg
bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-3:9092
acks=1
EOF

Step 4: Restart Minion to apply changes

systemctl restart minion

Step 5: Verify Kafka configuration and connectivity

Login to Karaf Shell

ssh admin@localhost -p 8201

Test if Kafka RPC and Sink feature is started

feature:list | grep opennms-core-ipc-rpc-kafka
opennms-core-ipc-rpc-kafka | 25.0.0 | x | Started

feature:list | grep opennms-core-ipc-sink-kafka
opennms-core-ipc-sink-kafka | 25.0.0 | x | Started

Test connectivity to Kafka

health:check
Verifying the health of the container

Connecting to OpenNMS ReST API [Success]
Verifying installed bundles [Success]
Connecting to Kafka from RPC [Success]
Connecting to Kafka from Sink [Success]

=> Everything is awesome

Step 6. Verify Minion functionality

Ensure the Minion is registered in the OpenNMS Horizon web interface

1. Login as Administrator

2. Configure OpenNMS

3. Manage Minions

4. Minion should be registered and should be shown as "Up"

5. Click on the name of the Minion and go to the node detail page

43

6. Verify if the services on the loopback interface JMX-Minion, Minion-Heartbeat, Minion-RPC are
monitored and "Up"

5.1.5. Tuning Apache Kafka

The configuration is shipped with sane defaults, but depending on the size and network topology it
can be required to tune the Apache Kafka environment to meet certain needs. Apache Kafka options
can be set directly in the org.opennms.core.ipc.rpc.kafka.cfg and
org.opennms.core.ipc.sink.kafka.cfg file.

Alternatively: Kafka producer/consumer options can be set by defining additional system
properties prefixed with org.opennms.core.ipc.rpc.kafka and org.opennms.core.ipc.sink.kafka.

You can find available configuration parameters for Kafka here:

• Producer Configs for RPC communication

• New Consumer Configs for Sink communication

Multiple OpenNMS Horizon instances

Topics will be automatically created and are prefixed by default with OpenNMS. If you want to use an
Apache Kafka cluster with multiple OpenNMS Horizon instances, the topic prefix can be customized
by setting org.opennms.core.ipc.rpc.kafka.group.id and org.opennms.core.ipc.sink.kafka.group.id
to a string value which identifies your instance.

Tips for Kafka

For Kafka RPC, the number of partitions should always be greater than the
number of minions at a location. When there are multiple locations, partitions >=
max number of minions at a location.

By default, Kafka RPC supports buffers greater than >1MB by splitting large buffer
into chunks of 900KB(912600). Max buffer size (900KB, by default) can be
configured by setting org.opennms.core.ipc.rpc.kafka.max.buffer.size (in bytes).

Default time to live (time at which request will expire) is 20000 msec (20sec). It can
be changed by configuring system property org.opennms.core.ipc.rpc.kafka.ttl in
msec.

5.1.6. Using Single Topic for Kafka RPC

By default OpenNMS creates a request and response topic for each module at every location. When
dealing with too many locations, these numerous topics can overbuden Kafka. A single topic
structure creates one request topic for each location and one response topic for all modules,
regardless of location. Note that all Minions at any location must be running the same features in
order to make use of single topic.

Single topic must be configured on both Minion and OpenNMS.

44

https://kafka.apache.org/10/documentation.html#producerconfigs
https://kafka.apache.org/10/documentation.html#newconsumerconfigs

Configure single topic on Minion

echo 'single-topic=true' >> "$MINION_HOME/etc/org.opennms.core.ipc.rpc.kafka.cfg"

On OpenNMS, enable single topic by setting the org.opennms.core.ipc.rpc.kafka.single-topic
system property to true.

45

Chapter 6. Minion with GRPC Strategy
Minions and OpenNMS Horizon can communicate via gRPC for both RPC and Sink patterns. While
using GRPC strategy Minion runs a gRPC client that connects to OpenNMS Horizon gRPC server on a
custom port.

RPC pattern on GRPC strategy uses bidirectional streaming to send requests from OpenNMS Horizon
and get responses back from Minion. Sink pattern on GRPC strategy uses unidirectional streaming
to send sink messages from Minion to OpenNMS Horizon.

This section describes how you can set up OpenNMS Horizon to use gRPC for communication with
Minions.

6.1. Configure OpenNMS Horizon

Step 1: Set GRPC as IPC strategy.

cat <<EOF >${OPENNMS_HOME}/etc/opennms.properties.d/grpc.properties
org.opennms.core.ipc.strategy=osgi
EOF

Step 2: Add GRPC Server feature.

cat <<EOF >${OPENNMS_HOME}/etc/featuresBoot.d/grpc.boot
opennms-core-ipc-grpc-server
EOF

Step 3: Enable and configure TLS on gRPC server.

Enable TLS and configure TLS certificates and private keys.

cat <<EOF >${OPENNMS_HOME}/etc/org.opennms.core.ipc.grpc.server.cfg
tls.enabled=true
server.cert.filepath=/custom-path/server.crt
server.private.key.filepath=/custom-path/server.pem
client.cert.filepath=/custom-path/client.crt
EOF

Step 4: Configure max. message size if default of 10MB is not sufficient.

(needs to be configured on both server and client)

46

https://grpc.io/

Configure max. message size

cat <<EOF >${OPENNMS_HOME}/etc/org.opennms.core.ipc.grpc.server.cfg
max.message.size=10485760
EOF

Step 5: Restart OpenNMS Horizon.

systemctl restart opennms

6.2. Configure Minion

Step 1: Disable ActiveMQ for RPC and Sink.

Disable ActiveMQ on Minion startup

cat <<EOF >${MINION_HOME}/etc/featuresBoot.d/disable-activemq.boot
!minion-jms
!opennms-core-ipc-rpc-jms
!opennms-core-ipc-sink-camel
EOF

Step 2: Enable GRPC for RPC and Sink.

cat <<EOF >${MINION_HOME}/etc/featuresBoot.d/grpc.boot
opennms-core-ipc-grpc-client
EOF

Step 3: Configure gRPC server information.

Add gRPC server for RPC/Sink communication.

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.grpc.client.cfg
host=localhost
port=8990
EOF

Step 4: Enable and configure TLS on gRPC client.

47

Enable TLS and configure TLS certificates and private keys.

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.grpc.client.cfg
tls.enabled=true
trust.cert.filepath=/custom-path/ca.crt
client.cert.filepath=/custom-path/client.crt
client.private.key.filepath=/custom-path/client.pem
EOF

Step 5: Configure max. message size if default of 10MB is not sufficient.

(needs to be configured on both server and client)

Configure max. message size

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.grpc.client.cfg
max.message.size=10485760
EOF

Step 6: Restart Minion to apply changes.

systemctl restart minion

Step 7: Verify GRPC configuration and connectivity.

Login to Karaf shell

ssh admin@localhost -p 8201

Test if gRPC client can connect to OpenNMS Horizon gRPC server

feature:list | grep opennms-core-ipc-grpc-client
opennms-core-ipc-grpc-client │ 26.1.3 │ x │ Started

Test connectivity to Kafka

opennms-health:check
Verifying the health of the container

Connecting to OpenNMS ReST API [Success]
Verifying installed bundles [Success]
Connecting to gRPC IPC Server [Success]

=> Everything is awesome

48

Step 8. Verify Minion functionality.

Ensure the Minion is registered in the OpenNMS Horizon web interface

1. Login as Administrator

2. Configure OpenNMS

3. Manage Minions

4. Minion should be registered and should be shown as "Up"

5. Click on the name of the Minion and go to the node detail page

6. Verify if the services on the loopback interface JMX-Minion, Minion-Heartbeat, Minion-RPC are
monitored and "Up"

49

Chapter 7. Install other versions than stable
Installation packages are available for different releases of OpenNMS Horizon or Minion. You will
need to choose which release you would like to run and then configure your package repository to
point to that release. Configuring a package repository will enable you to install and update the
software by using standard Linux software update tools like yum and apt.

The following package repositories are available:

Table 14. OpenNMS package repositories

Release Description

stable Latest stable release. This version is recommended for all users.

testing Release candidate for the next stable release.

snapshot Latest successful development build, the "nightly" build.

branches/${BRANCH-
NAME}

Install from a specific branch name for testing a specific feature that is under
development. Available branches can be found in https://yum.opennms.org/
branches/ or https://debian.opennms.org/dists/branches/.

To install a different release the repository files have to be installed and manually modified.

In Debian systems modify the repository file in /etc/apt/sources.list.d/opennms.list.

deb https://debian.opennms.org snapshot main①
deb-src https://debian.opennms.org snapshot main①
EOF
wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -
apt update

① Change from stable to snapshot

On RHEL systems you can install a snapshot repository with:

yum -y install https://yum.opennms.org/repofiles/opennms-repo-snapshot-
rhel7.noarch.rpm

For branches use repofiles/opennms-repo-branches-${branch-name}-

rhel7.noarch.rpm.

The installation procedure is the same as with the stable version.

50

https://yum.opennms.org/branches/
https://yum.opennms.org/branches/
https://debian.opennms.org/dists/branches/

Chapter 8. Setup Minion with a config file
Beside manually configuring a Minion instance via the Karaf CLI it is possibleto modify and deploy
its configuration file through configuration management tools. The configuration file is located in
${MINION_HOME}/etc/org.opennms.minion.controller.cfg. All configurations set in Karaf CLI will be
persisted in this configuration file which can also be populated through configuration management
tools.

Configuration file for Minion

id = 00000000-0000-0000-0000-deadbeef0001
location = MINION
broker-url = tcp://myopennms.example.org:61616
http-url = http://myopennms.example.org:8980/opennms

The Minion needs to be restarted when this configuration file is changed.

In case the credentials needs to be set through the CLI with configuration
management tools or scripts, the ${MINION_HOME}/bin/client command can be used
which allows to execute Karaf commands through the Linux shell.

51

Chapter 9. Running in non-root
environments
This section provides information running OpenNMS Horizon and Minions processes in non-root
environments. Running with a system user have restricted possibilites. This section describes how
to configure your Linux system related to:

• sending ICMP packages as an unprivileged user

• receiving Syslog on ports < 1023, e.g. 514/udp

• receiving SNMP Trap on ports < 1023,e.g. 162/udp

9.1. Send ICMP as non-root
By default, Linux does not allow regular users to perform ping operations from arbitrary programs
(including Java). To enable the Minion or OpenNMS Horizon to ping properly, you must set a sysctl
option.

Enable User Ping (Running System)d

run this command as root to allow ping by any user (does not survive reboots)
sysctl net.ipv4.ping_group_range='0 429496729'

If you wish to restrict the range further, use the GID for the user the Minion or OpenNMS Horizon
will run as, rather than 429496729.

To enable this permanently, create a file in /etc/sysctl.d/ to set the range:

/etc/sysctl.d/99-zzz-non-root-icmp.conf

we start this filename with "99-zzz-" to make sure it's last, after anything else
that might have set it
net.ipv4.ping_group_range=0 429496729

9.2. Trap reception as non-root
If you wish your Minion or OpenNMS Horizon to listen to SNMP Traps, you will need to configure
your firewall to port forward from the privileged trap port (162) to the Minion’s default trap
listener on port 1162.

52

Forward 162 to 1162 with Firewalld

enable masquerade to allow port-forwards
firewall-cmd --add-masquerade
forward port 162 TCP and UDP to port 1162 on localhost
firewall-cmd --add-forward-port=port=162:proto=udp:toport=1162:toaddr=127.0.0.1
firewall-cmd --add-forward-port=port=162:proto=tcp:toport=1162:toaddr=127.0.0.1

9.3. Syslog reception as non-root
If you wish your Minion or OpenNMS Horizon to listen to syslog messages, you will need to
configure your firewall to port forward from the privileged Syslog port (514) to the Minion’s default
syslog listener on port 1514.

Forward 514 to 1514 with Firewalld

enable masquerade to allow port-forwards
firewall-cmd --add-masquerade
forward port 514 TCP and UDP to port 1514 on localhost
firewall-cmd --add-forward-port=port=514:proto=udp:toport=1514:toaddr=127.0.0.1
firewall-cmd --add-forward-port=port=514:proto=tcp:toport=1514:toaddr=127.0.0.1

53

Chapter 10. Use R for statistical computing
R is a free software environment for statistical computing and graphics. OpenNMS Horizon can
leverage the power of R for forecasting and advanced calculations on collected time series data.

OpenNMS Horizon interfaces with R via stdin and stdout, and for this reason, R must be installed on
the same host as OpenNMS Horizon. Note that installing R is optional, and not required by any of
the core components.

 The R integration is not supported on Microsoft Windows systems.

10.1. Install R on RHEL
Ensure the dnf plugin config-manager is installed

dnf -y install dnf-plugins-core

Enable the PowerTools repository for R dependencies

dnf config-manager --set-enabled PowerTools

Install the epel-release repository with R packages

dnf -y install epel-release

Install R-core package

dnf -y install R-core

10.2. Install R on Debian
Install R

apt -y install r-recommended

54

https://www.r-project.org/

Chapter 11. Using a different Time Series
Storage
OpenNMS Horizon stores performance data in a time series storage which is by default JRobin. For
different scenarios it is useful to switch to a different time series storage. The following
implementations are supported:

Table 15. Supported Time Series Databasees

JRobin JRobin is a clone of RRDTool written in Java, it does not fully cover the latest
feature set of RRDTool and is the default when you install OpenNMS Horizon.
Data is stored on the local file system of the OpenNMS Horizon node.
Depending on I/O capabilities it works good for small to medium sized
installations.

RRDTool RRDTool is active maintained and the de-facto standard dealing with time
series data. Data is stored on the local file system of the OpenNMS Horizon
node. Depending on I/O capabilities it works good for small to medium sized
installations.

Newts Newts is a database schema for Cassandra. The time series is stored on a
dedicated Cassandra cluster which gives growth flexibility and allows to
persist time series data in a large scale.

This section describes how to configure OpenNMS Horizon to use RRDTool and Newts.

The way how data is stored in the different time series databases makes it
extremely hard to migrate from one technology to another. Data loss can’t be
prevented when you switch from one to another.

11.1. RRDtool
In most Open Source applications, RRDtool is often used and is the de-facto open standard for Time
Series Data. The basic installation of OpenNMS Horizon comes with JRobin but it is simple to switch
the system to use RRDtool to persist Time Series Data. This section describes how to install RRDtool,
the jrrd2 OpenNMS Java Interface and how to configure OpenNMS Horizon to use it.

11.1.1. Install RRDTool on RHEL

 Following this guide does not cover data migration from JRobin to RRDTool.

To install jrrd2 enable the OpenNMS YUM repository ensure the repositories are
enabled. You can enable them with dnf config-manager --enable opennms-repo-
stable-*.

55

https://wiki.opennms.org/wiki/JRobin
http://opennms.github.io/newts/
http://cassandra.apache.org
http://oss.oetiker.ch/rrdtool

Step 1: Install RRDTool and the jrrd2 interface

Installation on RHEL

dnf -y install rrdtool jrrd2

Step 2: Configure OpenNMS Horizon to use RRDTool

cat << EOF | sudo tee /opt/opennms/etc/opennms.properties.d/timeseries.properties
org.opennms.rrd.strategyClass=org.opennms.netmgt.rrd.rrdtool.MultithreadedJniRrdStrate
gy
org.opennms.rrd.interfaceJar=/usr/share/java/jrrd2.jar
opennms.library.jrrd2=/usr/lib64/libjrrd2.so
org.opennms.web.graphs.engine=rrdtool # optional, unset if you want to keep Backshift
as default
EOF

The visualization with the graph engine is optional. You can still use the default
graphing engine backshift by not setting the org.opennms.web.graphs.engine

property and use the system default.

Step 3: Restart OpenNMS Horizon and verify setup

find /opt/opennms/share/rrd -iname "*.rrd"

With the first data collection, RRDTool files with extension .rrd will be created. The JRobin files with
extension .jrb are not used anymore and are not deleted automatically.

11.1.2. Reference

The following configuration files have references to the RRDTool binary and may be changed if you
have a customized RRDTool setup.

Table 16. References to the RRDtool binary

Configuration file Property

opennms.properties rrd.binary=/usr/bin/rrdtool

response-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

response-graph.properties command.prefix=/usr/bin/rrdtool

info.command=/usr/bin/rrdtool

snmp-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

snmp-graph.properties command.prefix=/usr/bin/rrdtool

command=/usr/bin/rrdtool info

56

11.1.3. Install RRDTool on Debian

 Following this guide does not cover data migration from JRobin to RRDTool.

A more current version of RRDTool is in the OpenNMS YUM repository. The
provided versions can be shown with apt show rrdtool. This guide uses the
RRDTool provided in the OpenNMS repository. When using the Debian/Ubuntu
provided RRDTool package verify the path to the rrdtool binary file.

Step 1: Install RRDTool and the jrrd2 interface

Installation on RHEL

apt -y install rrdtool jrrd2

Step 2: Configure OpenNMS Horizon to use RRDTool

cat << EOF | sudo tee
/usr/share/opennms/etc/opennms.properties.d/timeseries.properties
org.opennms.rrd.strategyClass=org.opennms.netmgt.rrd.rrdtool.MultithreadedJniRrdStrate
gy
org.opennms.rrd.interfaceJar=/usr/share/java/jrrd2.jar
opennms.library.jrrd2=/usr/lib/jni/libjrrd2.so
org.opennms.web.graphs.engine=rrdtool # optional, unset if you want to keep Backshift
as default
EOF

The visualization with the graph engine is optional. You can still use the default
graphing engine backshift by not setting the org.opennms.web.graphs.engine

property and use the system default.

Step 3: Restart OpenNMS Horizon and verify setup

find /usr/share/opennms/share/rrd -iname "*.rrd"

With the first data collection, RRDTool files with extension .rrd will be created. The JRobin files with
extension .jrb are not used anymore and are not deleted automatically.

11.1.4. Reference

The following configuration files have references to the RRDTool binary and may be changed if you
have a customized RRDTool setup.

Table 17. References to the RRDtool binary

57

Configuration file Property

opennms.properties rrd.binary=/usr/bin/rrdtool

response-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

response-graph.properties command.prefix=/usr/bin/rrdtool

info.command=/usr/bin/rrdtool

snmp-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

snmp-graph.properties command.prefix=/usr/bin/rrdtool

command=/usr/bin/rrdtool info

11.2. Newts for Time Series data
Newts is a time-series data schema for Apache Cassandra. It enables horizontally scale capabilities
for your time series storage and is an alternative to JRobin and RRDtool.

The Cassandra cluster design, setup, sizing, tuning and operation is out of scope for this section. To
install and set up a Cassandra cluster please follow the Cassandra installation instructions. For
further information see Cassandra Getting Started Guide.

To avoid unwanted updates disable the Cassandra repository on DNF/YUM based
distributions or use apt-mark hold cassandra on APT based distributions.

For simplicity we use the ${OPENNMS_HOME}/bin/newts init command which
initializes a Newts keyspace for you and the defaults are not optimal tuned for a
production-ready environment. If you want to build a production environment
please consult Sizing Cassandra for Newts and planning Anti-patterns in Cassandra
articles.

11.2.1. Objectives

• Configure OpenNMS Horizon to use an existing Cassandra cluster

• Initializing the Newts keyspace using newts init with STCS without production-ready tuning

• Verify time series data is stored and can be accessed

11.2.2. Before you begin

• A running instance of OpenNMS Horizon running on Linux

• Working data collection and response time metrics from Collectd and Pollerd

• Cassandra cluster with access to the Cassandra client port TCP/9042

It is currently not supported to initialize the Newts keyspace from Microsoft
Windows Server operating system. Microsoft Windows based Cassandra server can
be part of the cluster, but keyspace initialization is only possible using a Linux
operating system.

58

http://newts.io/
http://cassandra.apache.org/
https://en.wikipedia.org/wiki/Scalability#Horizontal
http://www.opennms.org/wiki/JRobin
http://oss.oetiker.ch/rrdtool/
http://cassandra.apache.org/download
https://cassandra.apache.org/doc/latest/getting_started/index.html
https://opennms.discourse.group/t/sizing-cassandra-for-newts/771
https://docs.datastax.com/en/dse-planning/doc/planning/planningAntiPatterns.html

11.2.3. Configure OpenNMS Horizon to use Newts

Step 1: Configure Cassandra endpoints, keyspace and time series strategy

cat << EOF | sudo tee /opt/opennms/etc/opennms.properties.d/timeseries.properties
Configure storage strategy
org.opennms.rrd.storeByForeignSource=true①
org.opennms.timeseries.strategy=newts②

Configure Newts time series storage connection
org.opennms.newts.config.hostname={cassandra-ip1,cassandra-ip2}③
org.opennms.newts.config.keyspace=newts④
org.opennms.newts.config.port=9042⑤

One year in seconds
org.opennms.newts.config.ttl=31540000

Seven days in seconds
org.opennms.newts.config.resource_shard=604800
EOF

① Associate time series data by the foreign ID instead of the database generated Node-ID

② Set time-series strategy to use newts

③ Host or IP addresses of the Cassandra cluster nodes can be a comma-separated list

④ Name of the keyspace which is initialized and used

⑤ Port to connect to Cassandra

Step 2: Initialize the Newts schema in Cassandra

${OPENNMS_HOME}/bin/newts init

Step 3: Verify if the keyspace was properly initialized

Connect to a Cassandra node with a CQL shell

cd $CASSANDRA_HOME/bin
./cqlsh

use newts;
describe table terms;
describe table samples;

Step 4: Apply changes and verify your configuration

59

systemctl restart opennms

Go to the Node detail page from a SNMP managed device and verify if you response time graphs for
ICMP and Node-level Performance data.

60

	Installation Guide
	Table of Contents
	Chapter 1. Compatibility
	Chapter 2. Setting up a basic OpenNMS Horizon
	2.1. Objectives
	2.2. Before you begin
	2.3. Installing on RHEL
	2.4. Installing on Debian
	2.5. Installing on Windows
	2.6. Run with Docker

	Chapter 3. Monitor isolated location with Minion
	3.1. Objectives
	3.2. Before you begin
	3.3. Installing on RHEL
	3.4. Installing on Debian
	3.5. Run with Docker

	Chapter 4. Sentinel
	4.1. Before you begin
	4.2. Installing on RHEL
	4.3. Installing on Debian

	Chapter 5. Minion with custom messaging system
	5.1. Setup using Apache Kafka

	Chapter 6. Minion with GRPC Strategy
	Chapter 7. Install other versions than stable
	Chapter 8. Setup Minion with a config file
	Chapter 9. Running in non-root environments
	9.1. Send ICMP as non-root
	9.2. Trap reception as non-root
	9.3. Syslog reception as non-root

	Chapter 10. Use R for statistical computing
	10.1. Install R on RHEL
	10.2. Install R on Debian

	Chapter 11. Using a different Time Series Storage
	11.1. RRDtool
	11.2. Newts for Time Series data

