
Installation Guide
Copyright (c) 2015-2019 The OpenNMS Group, Inc.

OpenNMS Horizon 25.1.1, Last updated 2019-12-03 13:49:10 EST

Table of Contents
1. Compatibility . 1

2. Setting up a basic OpenNMS Horizon . 2

2.1. Objectives . 2

2.2. Before you begin . 2

2.3. Installing on RHEL . 3

2.4. Installing on Debian. 7

2.5. Installing on Windows . 10

3. Monitor isolated location with Minion . 14

3.1. Objectives . 14

3.2. Before you begin. 14

3.3. Installing on RHEL . 14

3.4. Installing on Debian. 18

4. Sentinel . 22

4.1. Before you begin. 22

4.2. Installing on RHEL . 22

4.3. Installing on Debian. 25

5. Run with Docker. 29

5.1. Objectives . 29

5.2. Before you begin. 29

5.3. Quickstart service stack . 29

5.4. Configuration Reference. 33

6. Minion with custom messaging system . 39

6.1. Setup using Apache Kafka . 39

7. Install other versions than stable. 44

8. Setup Minion with a config file. 45

9. Running in non-root environments. 46

9.1. Send ICMP as non-root . 46

9.2. Trap reception as non-root. 46

9.3. Syslog reception as non-root . 47

10. Use R for statistical computing . 48

10.1. Install R on RHEL . 48

10.2. Install R on Debian. 48

11. Using a different Time Series Storage . 49

11.1. RRDtool . 49

11.2. Newts. 52

Chapter 1. Compatibility
OpenNMS Horizon 25.1.1 requires the following component versions:

Component Version Compatibility

OpenNMS Helm 3+

OpenNMS Integration API 0.2.x

Cassandra 3.11.+

Elasticsearch 7.x

Java Development Kit OpenJDK 8, OpenJDK 11

Kafka 1.x - 2.x

PostgreSQL 10.x - 12.x

RRDTool 1.7.x

1

Chapter 2. Setting up a basic OpenNMS
Horizon
The OpenNMS Horizon platform can be installed on multiple OS families. This guide provides
instructions for installing the platform on Red Hat Enterprise Linux (RHEL)-based, Debian-based,
and Microsoft Windows operating systems.

2.1. Objectives
• Installing OpenNMS Horizon components on a single node using the built-in JRobin as time

series storage

• Setup OpenNMS Horizon on recommended operating systems

• Login the Web User Interface and change the default admin password

2.2. Before you begin
The following abbreviations will be used to refer to their respective entry through this
documentation.

Table 1. Operating Systems

RHEL Red Hat Enterprise Linux 7 or higher, CentOS 7 or higher

Debian Debian 9 or higher, Ubuntu 16.04 LTS or higher

Windows Microsoft Windows Server 2012, Windows 10

OpenJDK 11
Development Kit

Installed OpenJDK 11 Development Kit

It is recommended to meet the following requirements:

Table 2. Installation Requirements

Minimal Hardware 2 CPU, 2 GB RAM, 20 GB disk

Operating System RHEL or Debian in a current version is recommended. Please be aware
OpenNMS Horizon is developed and mostly operated on Linux systems.
Community support is limited when you run on Microsoft Windows platform.
On Microsoft Windows the R integration for statistical computation on time
series data is not supported.

Internet Access to {yum,debian}.opennms.org or SourceForge for Microsoft Windows via
https.

DNS Setup Please make sure your DNS settings for the OpenNMS server are correct and
the localhost name can be resolved. If there is an incorrect or missing A
Resource Record for the server hostname, OpenNMS might not start correctly.
The Java security manager might not initialize and an RMI class loader
disabled exception will be shown.

2

Depending on the installed operating system, the path for OpenNMS Horizon is different. If the
instruction refers to ${OPENNMS_HOME}, the path is resolved to the following directories:

Table 3. Directory Structure

RHEL /opt/opennms

Debian /usr/share/opennms

Windows C:\Program Files\opennms

2.3. Installing on RHEL
The following steps will be described:

1. Installation of the opennms meta package which handles all dependencies

2. Initialize PostgreSQL database and configure access

3. Initialize OpenNMS Horizon database and start

4. Log in to the Web User Interface and change default admin password

All commands on the command line interface need to be executed with root permissions.

Step 1: Install OpenNMS Horizon

Add yum repository and import GPG key

dnf -y install https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

Installation of with all built-in dependencies

dnf -y install opennms

The following packages will be automatically installed:

• jicmp6 and jicmp: Java bridge to allow sending ICMP messages from OpenNMS Horizon
repository.

• opennms-core: OpenNMS Horizon core services, e.g. Provisiond, Pollerd and Collectd from
OpenNMS Horizon repository.

• opennms-webapp-jetty: OpenNMS Horizon web application from OpenNMS Horizon repository

• postgresql: PostgreSQL database server from distribution repository

• postgresql-libs: PostgreSQL database from distribution repository

With the successful installed packages the OpenNMS Horizon is installed in the following directory
structure:

3

[root@localhost /opt/opennms]# tree -L 1
.
└── opennms
 ├── bin
 ├── contrib
 ├── data
 ├── deploy
 ├── etc
 ├── jetty-webapps
 ├── lib
 ├── logs -> /var/log/opennms
 ├── share -> /var/opennms
 └── system



We recommend disabling the OpenNMS Horizon repository after installation to
prevent unwanted upgrades while it is running. OpenNMS Horizon requires some
manual steps upon upgrade configuration files or migrate database schemas to a
new version. For this reason, it is recommended to exclude the OpenNMS Horizon
packages from update except when you are planning on performing an upgrade.

dnf config-manager --disable opennms-repo-stable-*

Step 2: Initialize and setup PostgreSQL

Initialization of the PostgreSQL database

postgresql-setup --initdb --unit postgresql

System startup configuration for PostgreSQL

systemctl enable postgresql

Startup PostgreSQL database

systemctl start postgresql

Create an opennms database user with a password and create an opennms database which is owned
by the user opennms

su - postgres
createuser -P opennms
createdb -O opennms opennms

4

Set a password for Postgres super user

psql -c "ALTER USER postgres WITH PASSWORD 'YOUR-POSTGRES-PASSWORD';"
exit


The super user is required to be able to initialize and change the database schema
for installation and updates.

Change the access policy for PostgreSQL

vi /var/lib/pgsql/data/pg_hba.conf

Allow OpenNMS Horizon accessing the database over the local network with a MD5 hashed password

host all all 127.0.0.1/32 md5①
host all all ::1/128 md5①

① Change method from ident to md5 for IPv4 and IPv6 on localhost.

Apply configuration changes for PostgreSQL

systemctl reload postgresql

Configure database access in OpenNMS Horizon

vi ${OPENNMS_HOME}/etc/opennms-datasources.xml

Set credentials to access the PostgreSQL database

<jdbc-data-source name="opennms"
 database-name="opennms"①
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/opennms"
 user-name="** YOUR-OPENNMS-USERNAME **"②
 password="** YOUR-OPENNMS-PASSWORD **" />③

<jdbc-data-source name="opennms-admin"
 database-name="template1"
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/template1"
 user-name="postgres"④
 password="** YOUR-POSTGRES-PASSWORD **" />⑤

① Set the database name OpenNMS Horizon should use

② Set the user name to access the opennms database table

③ Set the password to access the opennms database table

5

④ Set the postgres user for administrative access to PostgreSQL

⑤ Set the password for administrative access to PostgreSQL

Step 3: Initialize and start OpenNMS Horizon

Detect of Java environment and persist in /opt/opennms/etc/java.conf

${OPENNMS_HOME}/bin/runjava -s

Initialize the database and detect system libraries persisted in /opt/opennms/etc/libraries.properties

${OPENNMS_HOME}/bin/install -dis

Configure systemd to start OpenNMS Horizon on system boot

systemctl enable opennms

Start OpenNMS Horizon

systemctl start opennms

Allow connection to the Web UI from your network

firewall-cmd --permanent --add-port=8980/tcp
systemctl reload firewalld


If you want to receive SNMP Traps or Syslog messages you have to allow incoming
traffic on your host firewall as well. By default OpenNMS SNMP trap daemon is
listening on 162/udp and Syslog daemon is listening on 10514/udp. The SNMP Trap
daemon is enabled by default, the OpenNMS Syslog daemon is disabled.

Step 4: First Login and change default password

After starting OpenNMS the web application can be accessed on http://<ip-or-fqdn-of-your-
server>:8980/opennms. The default login user is admin and the password is initialized to admin.

1. Open in your browser http://<ip-or-fqdn-of-your-server>:8980/opennms

2. Login with with admin/admin

3. Click in main navigation menu on "admin → Change Password → Change Password"

4. Set as current password admin and set a new password and confirm your newly set password

5. Click "Submit"

6. Logout and login with your new password

6

http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms

Next Steps

Additional information can be found in these follow up documents:

• Getting Started Guide

Learn the first steps to setup, configure, and maintain an OpenNMS Horizon.

• Reference Guide

Find in-depth information on the detecters, monitors, collectors, and configuration files used by
the OpenNMS Horizon platform.

2.4. Installing on Debian
The following steps will be described:

1. Installation of the opennms meta package which handles all dependencies

2. Initialize PostgreSQL database and configure access

3. Initialize OpenNMS Horizon database and start

4. Log in to the Web User Interface and change default admin password

All commands on the command line interface need to be executed with root permissions.

Step 1: Install OpenNMS Horizon

Add apt repository in /etc/apt/sources.list.d/opennms.list and add GPG key

cat << EOF | sudo tee /etc/apt/sources.list.d/opennms.list
deb https://debian.opennms.org stable main
deb-src https://debian.opennms.org stable main
EOF
wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -
apt update

Installation of OpenNMS Horizon with all built-in dependencies

apt -y install opennms

The following packages are required by the opennms package and will be automatically installed:

• jicmp6 and jicmp: Java bridge to allow sending ICMP messages from OpenNMS repository.

• opennms-core: OpenNMS core services, e.g. Provisiond, Pollerd and Collectd from OpenNMS
repository.

• opennms-webapp-jetty: OpenNMS web application from OpenNMS repository

• postgresql: PostgreSQL database server from distribution repository

7

• postgresql-libs: PostgreSQL database from distribution repository

With the successful installed packages the OpenNMS Horizon is installed in the following directory
structure:

[root@localhost /usr/share/opennms]# tree -L 1
.
└── opennms
 ├── bin
 ├── data
 ├── deploy
 ├── etc -> /etc/opennms
 ├── instances
 ├── jetty-webapps
 ├── lib -> ../java/opennms
 ├── logs -> /var/log/opennms
 ├── share -> /var/lib/opennms
 └── system



We recommend disabling the OpenNMS Horizon repository after installation to
prevent unwanted upgrades while it is running. OpenNMS Horizon requires some
manual steps upon upgrade configuration files or migrate database schemas to a
new version. For this reason, it is recommended to exclude the OpenNMS Horizon
packages from update except when you are planning on performing an upgrade.

apt-mark hold libopennms-java \
 libopennmsdeps-java \
 opennms-common \
 opennms-db

Step 2: Initialize and setup PostgreSQL

The Debian package installs the PostgreSQL database and is already initialized. The PostgreSQL
service is already added in the runlevel configuration for system startup.

Startup PostgreSQL database

systemctl start postgresql

Create an opennms database user with a password and create an opennms database which is owned
by the user opennms

su - postgres
createuser -P opennms
createdb -O opennms opennms

8

Set a password for Postgres super user

psql -c "ALTER USER postgres WITH PASSWORD 'YOUR-POSTGRES-PASSWORD';"
exit


The super user is required to be able to initialize and change the database schema
for installation and updates.

Configure database access in OpenNMS Horizon

vi ${OPENNMS_HOME}/etc/opennms-datasources.xml

Set credentials to access the PostgreSQL database

<jdbc-data-source name="opennms"
 database-name="opennms"①
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/opennms"
 user-name="** YOUR-OPENNMS-USERNAME **"②
 password="** YOUR-OPENNMS-PASSWORD **" />③

<jdbc-data-source name="opennms-admin"
 database-name="template1"
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/template1"
 user-name="postgres"④
 password="** YOUR-POSTGRES-PASSWORD **" />⑤

① Set the database name OpenNMS Horizon should use

② Set the user name to access the opennms database table

③ Set the password to access the opennms database table

④ Set the postgres user for administrative access to PostgreSQL

⑤ Set the password for administrative access to PostgreSQL

Step 3: Initialize and start OpenNMS Horizon

Detect of Java environment and persist in /usr/share/opennms/etc/java.conf

${OPENNMS_HOME}/bin/runjava -s

Initialize the database and detect system libraries persisted in /opt/opennms/etc/libraries.properties

${OPENNMS_HOME}/bin/install -dis

9

Configure systemd to start OpenNMS Horizon on system boot

systemctl enable opennms

Start OpenNMS Horizon

systemctl start opennms


If you want to receive SNMP Traps or Syslog messages you have to allow incoming
traffic on your host firewall as well. By default OpenNMS SNMP trap daemon is
listening on 162/udp and Syslog daemon is listening on 10514/udp. The SNMP Trap
daemon is enabled by default, the OpenNMS Syslog daemon is disabled.

Step 4: First Login and change default password

After starting OpenNMS the web application can be accessed on http://<ip-or-fqdn-of-your-
server>:8980/opennms. The default login user is admin and the password is initialized to admin.

1. Open in your browser http://<ip-or-fqdn-of-your-server>:8980/opennms

2. Login with with admin/admin

3. Click in main navigation menu on "admin → Change Password → Change Password"

4. Set as current password admin and set a new password and confirm your newly set password

5. Click "Submit"

6. Logout and login with your new password

Next Steps

Additional information can be found in these follow up documents:

• Getting Started Guide

Learn the first steps to setup, configure, and maintain an OpenNMS Horizon.

• Reference Guide

Find in-depth information on the detecters, monitors, collectors, and configuration files used by
the OpenNMS Horizon platform.

2.5. Installing on Windows
The installer for Microsoft Windows does not handle PostgreSQL and Java dependencies as on Linux
operating systems.


Ensure you have installed Oracle Java Development Kit 8 (JDK) or higher from the
Oracle web page or from the OpenJDK community build site.

10

http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
https://www.oracle.com/technetwork/java/index.html
https://www.oracle.com/technetwork/java/index.html
https://github.com/ojdkbuild/ojdkbuild

The following steps will be described:

1. Install PostgreSQL on Microsoft Windows

2. Install OpenNMS Horizon with GUI installer

3. Initialize PostgreSQL database and configure access

4. Log in to the Web User Interface and change default admin password

It is required to have local administration permission to install OpenNMS Horizon.


To edit OpenNMS configuration files on Microsoft Windows the tool Notepad++ can
deal with the formatting of .property and .xml files.

Step 1: Install PostgreSQL

PostgreSQL is available for Microsoft Windows and latest version can be downloaded from
Download PostgreSQL page. Follow the on-screen instructions of the graphical installer.


The placeholder {PG-VERSION} represents the PostgreSQL version number. Check
the Compatibility Matrix to find a suited PostgreSQL version.

During the installation of PostgreSQL the following information need to be provided:

• Installation directory for PostgreSQL, e.g. C:\Program Files\PostgreSQL{PG-VERSION}

• Password for the database superuser (postgres), this password will be used during the OpenNMS
setup.

• Port to listen for PostgreSQL connections, default is 5432 and can normally be used.

• Locale for the database, keep [Default locale], if you change the locale, OpenNMS may not be
able to initialize the database.

 It is not required to install anything additional from the PostgreSQL Stack Builder.

Step 2: Install OpenNMS with GUI installer

For Microsoft Windows environments download the standalone-opennms-installer-{ONMS-
VERSION}.zip file from the OpenNMS SourceForge repository. Extract the downloaded ZIP file.

 The {ONMS-VERSION} has to be replaced with the latest stable version number.

Start the graphical installer and follow the on screen instructions. The following information has to
be provided:

• Path to Oracle JDK, e.g. C:\Program Files\Java\jdk1.8.0_71

• Installation path for OpenNMS, e.g. C:\Program Files\OpenNMS

• Select packages which has to be installed, the minimum default selection is Core and Docs

• PostgreSQL Database connection

11

https://notepad-plus-plus.org/
http://www.enterprisedb.com/products-services-training/pgdownload#windows
https://wiki.opennms.org/wiki/Installation_and_Upgrades#Compatibility_Matrix
http://sourceforge.net/projects/opennms/files/OpenNMS/

◦ Host: Server with PostgreSQL running, e.g. localhost

◦ Name: Database name for OpenNMS, e.g. opennms

◦ Port: TCP port connecting to PostgreSQL server, e.g. 5432

◦ Username (administrative superuser): PostgreSQL superuser, e.g. postgres

◦ Password (administrative superuser): Password given during PostgreSQL setup for the
superuser

◦ Username (runtime user for opennms): Username to connect to the OpenNMS database, e.g.
opennms

◦ Password (runtime user for opennms): Password to connect to the OpenNMS database, e.g.
opennms

• Configure a discovery range for an initial node discovery. If you don’t want any discovery set
begin and end to the same unreachable address.


Choose secure passwords for all database users and don’t use the example
passwords above in production.

Step 3: Configure PostgreSQL access for OpenNMS Horizon

Set credentials to access the PostgreSQL database

<jdbc-data-source name="opennms"
 database-name="opennms"①
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/opennms"
 user-name="** YOUR-OPENNMS-USERNAME **"②
 password="** YOUR-OPENNMS-PASSWORD **" />③

<jdbc-data-source name="opennms-admin"
 database-name="template1"
 class-name="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/template1"
 user-name="postgres"④
 password="** YOUR-POSTGRES-PASSWORD **" />⑤

① Set the database name OpenNMS Horizon should use

② Set the user name to access the opennms database table

③ Set the password to access the opennms database table

④ Set the postgres user for administrative access to PostgreSQL

⑤ Set the password for administrative access to PostgreSQL

After setting the username and passwords in opennms-datasources.xml re-run the graphical installer
and also initialize the database. OpenNMS can be started and stopped with the start.bat and
stop.bat script located in %OPENNMS_HOME%\bin directory.

12


The Wiki article Configuring OpenNMS as Windows Service describes how to
create a Windows Service from the start.bat files. There is also a Java Wrapper
which allows to install Java applications as Windows Service.

Step 4: First Login and change default password

After starting OpenNMS the web application can be accessed on http://<ip-or-fqdn-of-your-
server>:8980/opennms. The default login user is admin and the password is initialized to admin.

1. Open in your browser http://<ip-or-fqdn-of-your-server>:8980/opennms

2. Login with with admin/admin

3. Click in main navigation menu on "admin → Change Password → Change Password"

4. Set as current password admin and set a new password and confirm your newly set password

5. Click "Submit"

6. Logout and login with your new password

Next Steps

Additional information can be found in these follow up documents:

• Getting Started Guide

Learn the first steps to setup, configure, and maintain an OpenNMS Horizon.

• Reference Guide

Find in-depth information on the detecters, monitors, collectors, and configuration files used by
the OpenNMS Horizon platform.

13

http://www.opennms.org/wiki/Configuring_openNMS_as_Windows_Service
http://yajsw.sourceforge.net/#mozTocId527639
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms
http://<ip-or-fqdn-of-your-server>:8980/opennms

Chapter 3. Monitor isolated location with
Minion
This section describes how to install the Minion to monitor devices and services in a location which
can’t be reached from an OpenNMS Horizon instance.

3.1. Objectives
• Install a Minion to monitor devices and services unreachable from an OpenNMS Horizon

instance

• Configure an authenticated unencrypted communication between Minion and OpenNMS
Horizon using ActiveMQ and REST

3.2. Before you begin
Setting up a OpenNMS Horizon with Minions requires:

• Instance of OpenNMS Horizon needs to be exact same version as Minion packages

• Packages are available as RPMs for RHEL-based systems and DEBs for Debian-based systems

• OpenNMS Horizon needs to be installed and communication to the REST (8980/tcp) and
ActiveMQ (616161/tcp) endpoints is possible

Depending on the installed operating system, the path for Minion is different. If the instruction
refers to ${MINION_HOME}, the path is resolved to the following directories:

Table 4. Directory Structure

RHEL /opt/minion

Debian /usr/share/minion

3.3. Installing on RHEL
1. Setup OpenNMS Horizon to allow Minion communication

2. Installation of the opennms-minion meta package which handles all dependencies

3. Starting Minion and access the Karaf console over SSH

4. Configure Minion to communicate with OpenNMS Horizon

5. Verify the connectivity between Minion and OpenNMS Horizon

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Horizon to allow Minion communication

Communication between a Minion and OpenNMS Horizon uses REST API and a messaging system,

14

by default ActiveMQ. An authenticated user in OpenNMS Horizon is required for these
communication channels. The security role ROLE_MINION includes the minimal amount of
permissions required for a Minion to operate.


As an example we use in this guide the user name minion with password minion.
Change the credentials accordingly.

Create a user minion in the OpenNMS Horizon web user interface

1. Login the web user interface with a user which has administrative permissions

2. Go in the main navigation to "Login Name → Configure OpenNMS → Configure Users, Groups and
On-Call Roles → Configure Users"

3. Add a new user with login name minion and password minion and click Ok

4. Assign the security role ROLE_MINION, optional fill in a comment for what location and
purpose the user is used for and click Finish

5. The minion user should now be listed in the User List

Configure ActiveMQ to allow communication on public network interface

vi ${OPENNMS_HOME}/etc/opennms-activemq.xml

Remove comments for the transport connector listening on 0.0.0.0 and save

<transportConnector name="openwire" uri="tcp://0.0.0.0:61616?useJmx=false
&maximumConnections=1000&wireformat.maxFrameSize=104857600"/>

Restart OpenNMS Horizon

systemctl restart opennms

Verify if port 61616/tcp is listening on all interfaces

ss -lnpt sport = :61616
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:61616 *:* users:(("java",pid=1,fd=706))

Step 2: Install the repository and Minion package

Connect with SSH to your remote RHEL system where you need a Minion to be installed.

Install the Yum repository

dnf -y install https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

15

Install the Minion package

dnf -y install opennms-minion

With the successful installed packages the Minion is installed in the following directory structure:

[root@localhost /opt/minion]# $ tree -L 1
.
├── bin
├── deploy
├── etc
├── lib
├── repositories
└── system

The Minion’s startup configuration can be changed by editing the /etc/sysconfig/minion file. It
allows to override the defaults used at startup including:

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Minion and test access to Karaf Shell

Configure systemd to start Minion on system boot

systemctl enable minion

Startup Minion

systemctl start minion

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8201 admin@localhost

Step 4: Configure Minion to communicate with OpenNMS Horizon

Login to the Karaf Shell on the system where your Minion is installed with SSH

ssh -p 8201 admin@localhost

16

Configure the Minion’s location and endpoint URLs for communication with OpenNMS Horizon

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit org.opennms.minion.controller
admin@minion()> config:property-set location Office-Pittsboro
admin@minion()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@minion()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@minion()> config:update


Include the failover: portion of the broker URL to allow the Minion to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.

Configure the credentials to use when communicating with OpenNMS Horizon

admin@minion()> scv:set opennms.http minion minion
admin@minion()> scv:set opennms.broker minion minion


Another way to configure credentials is to use the scvcli utility in your Minion bin
directory.

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.http minion minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.broker minion minion

Restart the Minion after updating the credentials

[root@localhost /root]# $ systemctl restart minion

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Minion

ssh -p 8201 admin@localhost

17

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Verify connectivity with the OpenNMS Horizon

admin@minion()> minion:ping
Connecting to ReST...
OK
Connecting to Broker...
OK
admin@minion()>

3.4. Installing on Debian
1. Setup OpenNMS Horizon to allow Minion communication

2. Installation of the opennms-minion meta package which handles all dependencies

3. Starting Minion and access the Karaf console over SSH

4. Configure Minion to communicate with OpenNMS Horizon

5. Verify the connectivity between Minion and OpenNMS Horizon

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Horizon to allow Minion communication

Communication between a Minion and OpenNMS Horizon uses REST API and a messaging system,
by default ActiveMQ. An authenticated user in OpenNMS Horizon is required for these
communication channels. The security role ROLE_MINION includes the minimal amount of
permissions required for a Minion to operate.


As an example we use in this guide the user name minion with password minion.
Change the credentials accordingly.

Create a user minion in the OpenNMS Horizon web user interface

1. Login the web user interface with a user which has administrative permissions

2. Go in the main navigation to "Login Name → Configure OpenNMS → Configure Users, Groups and
On-Call Roles → Configure Users"

3. Add a new user with login name minion and password minion and click Ok

4. Assign the security role ROLE_MINION, optional fill in a comment for what location and
purpose the user is used for and click Finish

5. The minion user should now be listed in the User List

Configure ActiveMQ to allow communication on public network interface

vi ${OPENNMS_HOME}/etc/opennms-activemq.xml

18

Remove comments for the transport connector listening on 0.0.0.0 and save

<transportConnector name="openwire" uri="tcp://0.0.0.0:61616?useJmx=false
&maximumConnections=1000&wireformat.maxFrameSize=104857600"/>

Restart OpenNMS Horizon

systemctl restart opennms

Verify if port 61616/tcp is listening on all interfaces

ss -lnpt sport = :61616
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:61616 *:* users:(("java",pid=1,fd=706))

Step 2: Install the repository and Minion package

Add apt repository in /etc/apt/sources.list.d/opennms.list and add GPG key

echo 'deb https://debian.opennms.org stable main \
 deb-src https://debian.opennms.org stable main' >
/etc/apt/sources.list.d/opennms.list
wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -
apt update

Install the Minion package

apt -y install opennms-minion

The Minion packages setup the following directory structure:

[root@localhost /usr/share/minion]# $ tree -L 1
.
├── bin
├── deploy
├── etc
├── lib
├── repositories
└── system

Additionally, symbolic links are set up pointing to /etc/minion and /var/log/minion to match
Debian’s expected filesystem layout.

The Minion’s startup configuration can be changed by editing the /etc/default/minion file. It allows
to override the defaults used at startup including:

19

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Minion and test access to Karaf Shell

Configure systemd to start Minion on system boot

systemctl enable minion

Startup Minion

systemctl start minion

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8201 admin@localhost

Step 4: Configure Minion to communicate with OpenNMS Horizon

Login to the Karaf Shell on the system where your Minion is installed with SSH

ssh -p 8201 admin@localhost

Configure the Minion’s location and endpoint URLs for communication with OpenNMS Horizon

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@minion()> config:edit org.opennms.minion.controller
admin@minion()> config:property-set location Office-Pittsboro
admin@minion()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@minion()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@minion()> config:update


Include the failover: portion of the broker URL to allow the Minion to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.

Configure the credentials to use when communicating with OpenNMS Horizon

admin@minion()> scv:set opennms.http minion minion
admin@minion()> scv:set opennms.broker minion minion

20

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html


Another way to configure credentials is to use the scvcli utility in your Minion bin
directory.

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.http minion minion
[root@localhost /opt/minion]# $./bin/scvcli set opennms.broker minion minion

Restart the Minion after updating the credentials

[root@localhost /root]# $ systemctl restart minion

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Minion

ssh -p 8201 admin@localhost

Verify connectivity with the OpenNMS Horizon

admin@minion()> minion:ping
Connecting to ReST...
OK
Connecting to Broker...
OK
admin@minion()>

21

Chapter 4. Sentinel
This section describes how to install the Sentinel to scale individual components of OpenNMS
Horizon.


At the moment only flows can be distributed using Sentinel. In the future more
components will follow.

4.1. Before you begin
Setting up a OpenNMS Horizon with Sentinel requires:

• Instance of OpenNMS Horizon needs to be exact same version as Sentinel packages

• Packages are available as RPMs for RHEL-based systems and DEBs for Debian-based systems

• OpenNMS Horizon needs to be installed and communication to the REST (8980/tcp) and
ActiveMQ (616161/tcp) endpoints is possible

• At least one Minion needs to be installed and successful communicate with the OpenNMS
Horizon

Depending on the installed operating system, the path for Sentinel is different. If the instruction
refers to ${SENTINEL_HOME}, the path is resolved to the following directories:

Table 5. Directory Structure

RHEL /opt/sentinel

Debian /usr/share/sentinel

4.2. Installing on RHEL
1. Setup OpenNMS Horizon to allow Sentinel communication

2. Installation of the opennms-sentinel meta package which handles all dependencies

3. Starting Sentinel and access the Karaf console over SSH

4. Configure Sentinel to communicate with OpenNMS Horizon

5. Verify the connectivity between Sentinel and OpenNMS Horizon

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Horizon to allow Sentinel communication

This step is exactly the same as for Minion. Even the role name ROLE_MINION can be used, as there
does not exist a dedicated role ROLE_SENTINEL yet.

Therefore, please refer to section Setup OpenNMS Horizon to allow Minion communication.

22


Even if we have to configure the communication to the OpenNMS Horizon exactly
the same as for Minion no ReST requests are made and may be removed at a later
state.

Step 2: Install the repository and Sentinel package

Connect with SSH to your remote RHEL system where the Sentinel should be installed.

Install the Yum repository

dnf install -y https://yum.opennms.org/repofiles/opennms-repo-stable-rhel8.noarch.rpm
rpm --import https://yum.opennms.org/OPENNMS-GPG-KEY

Install the Sentinel package

dnf -y install opennms-sentinel

With the successful installed packages the Sentinel is installed in the following directory structure:

[root@localhost /opt/sentinel]# $ tree -L 1
.
|-- bin
|-- COPYING
|-- data
|-- deploy
|-- etc
|-- lib
`-- system

The Sentinel’s startup configuration can be changed by editing the /etc/sysconfig/sentinel file. It
allows to override the defaults used at startup including:

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Sentinel and test access to Karaf Shell

Configure systemd to start Sentinel on system boot

systemctl enable sentinel

Startup Sentinel

systemctl start sentinel

23

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8301 admin@localhost

Step 4: Configure Sentinel to communicate with OpenNMS Horizon

Login to the Karaf Shell on the system where your Sentinel is installed with SSH

ssh -p 8301 admin@localhost

Configure the Sentinel’s location and endpoint URLs for communication with OpenNMS Horizon

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@sentinel()> config:edit org.opennms.sentinel.controller
admin@sentinel()> config:property-set location Office-Pittsboro
admin@sentinel()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@sentinel()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@sentinel()> config:update


Include the failover: portion of the broker URL to allow the Sentinel to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.


Even if the id, location and http-url must be set the same ways as for Minion, this
may change in future versions of Sentinel.

Configure the credentials to use when communicating with OpenNMS Horizon

admin@sentinel()> scv:set opennms.http minion minion
admin@sentinel()> scv:set opennms.broker minion minion

Username and password is explicitly set to minion as it is assumed that they share the same
credentials and roles.


Another way to configure credentials is to use the scvcli utility in your Sentinel bin
directory.

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/sentinel
[root@localhost /opt/sentinel]# $./bin/scvcli set opennms.http minion minion
[root@localhost /opt/sentinel]# $./bin/scvcli set opennms.broker minion minion

24

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Restart the Sentinel after updating the credentials

[root@localhost /root]# $ systemctl restart sentinel

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Sentinel

ssh -p 8301 admin@localhost

Verify connectivity with the OpenNMS Horizon

admin@sentinel()> feature:install sentinel-core
admin@sentinel> health:check
Verifying the health of the container

Verifying installed bundles [Success]
Connecting to OpenNMS ReST API [Success]

=> Everything is awesome
admin@sentinel()>


The health:check command is a newer and more flexibel version of the original
minion:ping command. Therefore on Sentinel there is no equivalent such as
sentinel:ping.

4.3. Installing on Debian
1. Setup OpenNMS Horizon to allow Sentinel communication

2. Installation of the opennms-sentinel meta package which handles all dependencies

3. Starting Sentinel and access the Karaf console over SSH

4. Configure Sentinel to communicate with OpenNMS Horizon

5. Verify the connectivity between Sentinel and OpenNMS Horizon

All commands on the command line interface need to be executed with root permissions.

Step 1: Setup OpenNMS Horizon to allow Sentinel communication

This step is exactly the same as for Minion. Even the role name ROLE_MINION can be used, as there
does not exist a dedicated role ROLE_SENTINEL yet.

Therefore, please refer to section Setup OpenNMS Horizon to allow Minion communication.

25


Even if we have to configure the communication to the OpenNMS Horizon exactly
the same as for Minion no ReST requests are made and may be removed at a later
state.

Step 2: Install the repository and Sentinel package

Add apt repository in /etc/apt/sources.list.d/opennms.list and add GPG key

echo 'deb https://debian.opennms.org stable main \
 deb-src https://debian.opennms.org branches/features-sentinel main' >
/etc/apt/sources.list.d/opennms.list
wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -
apt update

Install the Sentinel package

apt -y install opennms-sentinel

The Sentinel packages setup the following directory structure:

[root@localhost /usr/share/sentinel]# $ tree -L 1
.
|-- bin
|-- COPYING
|-- data
|-- debian
|-- deploy
|-- etc
|-- lib
`-- system

Additionally, symbolic links are set up pointing to /etc/sentinel and /var/log/sentinel to match
Debian’s expected filesystem layout.

The Minion’s startup configuration can be changed by editing the /etc/default/sentinel file. It
allows to override the defaults used at startup including:

• Location of the JDK

• Memory usage

• User to run as

Step 3: Starting the Sentinel and test access to Karaf Shell

Configure systemd to start Sentinel on system boot

systemctl enable sentinel

26

Startup Sentinel

systemctl start sentinel

Test access to Karaf shell with user admin and password admin and exit with <ctrl-d>

ssh -p 8301 admin@localhost

Step 4: Configure Sentinel to communicate with OpenNMS Horizon

Login to the Karaf Shell on the system where your Sentinel is installed with SSH

ssh -p 8301 admin@localhost

Configure the Sentinel’s location and endpoint URLs for communication with OpenNMS Horizon

[root@localhost /root]# $ ssh -p 8201 admin@localhost
...
admin@sentinel()> config:edit org.opennms.sentinel.controller
admin@sentinel()> config:property-set location Office-Pittsboro
admin@sentinel()> config:property-set http-url http://opennms-fqdn:8980/opennms
admin@sentinel()> config:property-set broker-url failover:tcp://opennms-fqdn:61616
admin@sentinel()> config:update


Include the failover: portion of the broker URL to allow the Sentinel to re-establish
connectivity on failure. For a reference on the different URL formats, see ActiveMQ
URI Protocols.


Even if the id, location and http-url must be set the same ways as for Minion, this
may change in future versions of Sentinel.

Configure the credentials to use when communicating with OpenNMS Horizon

admin@sentinel()> scv:set opennms.http minion minion
admin@sentinel()> scv:set opennms.broker minion minion

Username and password is explicitly set to minion as it is assumed that they share the same
credentials and roles.


Another way to configure credentials is to use the scvcli utility in your Sentinel bin
directory.

27

http://activemq.apache.org/uri-protocols.html
http://activemq.apache.org/uri-protocols.html

Example of configuring credentials with the command line utility scvcli

[root@localhost /root]# $ cd /opt/sentinel
[root@localhost /usr/share/sentinel]# $./bin/scvcli set opennms.http minion minion
[root@localhost /usr/share/sentinel]# $./bin/scvcli set opennms.broker minion minion

Restart the Sentinel after updating the credentials

[root@localhost /root]# $ systemctl restart sentinel

 The credentials are configured separately since they are encrypted on disk.

Step 5: Verifying Connectivity

Connect to Karaf Shell of the Sentinel

ssh -p 8301 admin@localhost

Verify connectivity with the OpenNMS Horizon

admin@sentinel()> feature:install sentinel-core
admin@sentinel> health:check
Verifying the health of the container

Verifying installed bundles [Success]
Connecting to OpenNMS ReST API [Success]

=> Everything is awesome
admin@sentinel()>


The health:check command is a newer and more flexibel version of the original
minion:ping command. Therefore on Sentinel there is no equivalent such as
sentinel:ping.

28

Chapter 5. Run with Docker
Modern infrastructure allows you to deploy and run workloads in containers. With OpenNMS
Horizon we provide and publish container images on DockerHub.


We don’t install all available plugins in our published Docker image. If you want ot
customize and maintain your own image, you can find the Dockerfiles in our
source repository.

5.1. Objectives
• Run OpenNMS Horizon using Docker Compose with a basic setup and PostgreSQL on your local

system as a quickstart

• Persist RRD files from OpenNMS Horizon and PostgreSQL in a volume

• Run and configure a Minion in the stack and connect it to the OpenNMS Horizon instance using
environment variables

• Introduce a reference with all available configuration and mount conventions for more
advanced setups

5.2. Before you begin
It is required you have at least the following components installed:

• Current stable Docker release installed, e.g. installed from Docker Documentation

• Current stable Docker Compose installed, e.g. installed from Docker Compose instructions

• You should have a basic knowledge about Docker, Docker Compose with networking, persisting
files and mounting directories

5.3. Quickstart service stack

Step 1: Create service stack for PostgreSQL and OpenNMS Horizon

The first section describes how to setup OpenNMS Horizon service stack in a docker-compose.yml file.
Create a project directory withg mkdir opennms-horizon and create inside a docker-compose.yml file
with the following content:

version: '3'

volumes:
 data-postgres: {}①
 data-opennms: {}②

services:

29

https://hub.docker.com/u/opennms
https://github.com/OpenNMS/opennms/tree/develop/opennms-container
https://docs.docker.com/
https://docs.docker.com/compose/install/

 database:③
 image: postgres:12④
 container_name: database⑤
 environment:⑥
 - TZ=Europe/Berlin
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 volumes:⑦
 - data-postgres:/var/lib/postgresql/data
 healthcheck:⑧
 test: ["CMD-SHELL", "pg_isready -U postgres"]
 interval: 10s
 timeout: 30s
 retries: 3

 horizon:
 image: opennms/horizon:25.0.0⑨
 container_name: horizon
 environment:⑩
 - TZ=Europe/Berlin
 - POSTGRES_HOST=database
 - POSTGRES_PORT=5432
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 - OPENNMS_DBNAME=opennms
 - OPENNMS_DBUSER=opennms
 - OPENNMS_DBPASS=opennms
 volumes:
 - data-opennms:/opt/opennms/share/rrd⑪
 - ./overlay:/opt/opennms-overlay⑫
 command: ["-s"]
 ports:⑬
 - "8980:8980/tcp"
 - "8101:8101/tcp"
 - "61616:61616/tcp"
 healthcheck:⑭
 test: ["CMD", "curl", "-f", "-I", "http://localhost:8980/opennms/login.jsp"]
 interval: 1m
 timeout: 5s
 retries: 3

 minion:
 image: opennms/minion:25.0.0
 container_name: minion
 environment:
 - TZ=Europe/Berlin
 - MINION_ID=my-minion⑮
 - MINION_LOCATION=my-location⑯
 - OPENNMS_BROKER_URL=failover:tcp://horizon:61616⑯
 - OPENNMS_HTTP_URL=http://horizon:8980/opennms⑯
 command: ["-f"]

30

 ports:⑰
 - "8201:8201/tcp"
 - "162:1162/udp"

① Volume definition to persist permanently the PostgreSQL database

② Volume definition to persist permanently the RRD files from OpenNMS Horizon

③ Service name database for the PostgreSQL instance

④ Image reference for the vanilla PostgreSQL Docker image with a fixed version

⑤ Friendly container name

⑥ Environment variables to initialize a postgres user with a password.

⑦ Assign volume to persist the PostgreSQL database

⑧ Create a health check for the PostgreSQL database

⑨ Image reference for the OpenNMS Horizon container image using the latest stable version

⑩ Setup a data base connection using the postgres root user and initialize an opennms database with
user and credentials

⑪ Assign the volume to persist the RRD files permanently

⑫ Mount the configuration files to make them accessible in a local directory

⑬ Publish ports for the web user interface, Karaf Shell and ActiveMQ

⑭ Create a health check against the login page from OpenNMS Horizon

⑮ A defined identifier for this Minion, if not set a UUID will be generated

⑯ The name of the location the Minion and the connection to the ActiveMQ broker running in
OpenNMS Horizon

⑰ Publish ports for SSH access to the Karaf Shell and listen for SNMP Traps forwarding to an
internal un-privileged port


In this example we haven’t set credentials to connect the Minion via REST and the
ActiveMQ Message Broker. The _Minion will fall back and uses the default
admin/admin credentials for the communication.

Step 2: Start the service stack and test the functionality

cd opennms-horizon
docker-compose up -d


The startup and download can take a while, you can use the docker-compose ps
command and wait until the health check for the horizon service is up (healthy).
After download and startup verify if you can access the web user interface with
going to http://localhost:8980.

31

http://localhost:8980

Step 3: Configure ActiveMQ using the overlay directory convention

Obtain the ActiveMQ default configuration and persist it in the overlay directory so you can change it

mkdir overlay/etc && cd overlay/etc
docker cp $(docker ps -qf name=horizon):/opt/opennms/etc/opennms-activemq.xml .

Step 4:

Enable listening on all interfaces for ActiveMQ

vi opennms-activemq.xml

Uncomment the following line to allow external TCP connections

<!-- Uncomment this line to allow external TCP connections -->
<!--
 WARNING: Access to port 61616 should be firewalled to prevent unauthorized
injection
 of data into OpenNMS when this port is open.
-->
<transportConnector name="openwire"
uri="tcp://0.0.0.0:61616?useJmx=false&maximumConnections=1000&wireformat.maxFr
ameSize=104857600"/>

Step 5: Restart OpenNMS Horizon

docker-compose stop horizon
docker-compose up -d

Step 6: Run Minion health check

Login in to the Minion Karaf Shell and run the health check

ssh admin@localhost -p 8201

admin@minion> health:check
Verifying the health of the container

Connecting to OpenNMS ReST API [Success]
Verifying installed bundles [Success]
Connecting to JMS Broker [Success]

=> Everything is awesome

 The default admin password for the Minion Karaf Shell is admin.

32

Step 7: Verify status in the administrative Web UI

• Login as admin

• Configure OpenNMS → Manage Minions, the Minion should be registered and the Status should
be up

• Verify if Minion is provisioned automatically going to Info → Nodes and select the Minion, the
services JMX-Minion, Minion-Heartbeat and Minion-RPC should be up and provisioned on the
local loopback interface

5.4. Configuration Reference

5.4.1. OpenNMS Horizon

Startup Arguments

Argume
nt

Description

-h Display help with available arguments.

-f Start the process in the foreground and use existing data and configuration.

-i One-time command to initialize or update database and configuration files and do NOT
start.

-s Command to initialize or update database and configuration files and start OpenNMS in
the foreground.

-t One-time command to run the config-tester against the configuration.

Environment Variables

Table 6. Java options

Environment variable Description Required Default value

JAVA_OPTS Allows to add
additional Java options

optional -

Table 7. PostgreSQL connection configuration in opennms-datasources.xml

Environment
variable

Description Requ
ired

Default value

OPENNMS_DBNAME Database name used for OpenNMS
Horizon

requi
red

-

OPENNMS_DBUSER Username with access to the database requi
red

-

OPENNMS_DBPASS Password for user with acccess to the
database

requi
red

-

33

Environment
variable

Description Requ
ired

Default value

POSTGRES_HOST Host with the PostgreSQL server instance
running

requi
red

-

POSTGRES_PORT PostgreSQL server port optio
nal

5432

POSTGRES_USER PostgreSQL super user to initialize
database schema specified in
OPENNMS_DBNAME

requi
red

-

POSTGRES_PASSWORD PostgreSQL super user password requi
red

-

OPENNMS_DATABASE_CONN
ECTION_POOLFACTORY

Database connection pool factory optio
nal

org.opennms.core.db.Hika
riCPConnectionFactory

OPENNMS_DATABASE_CONN
ECTION_IDLETIMEOUT

Database connection pool idle timeout optio
nal

600

OPENNMS_DATABASE_CONN
ECTION_LOGINTIMEOUT

Database connection pool login timeout optio
nal

3

OPENNMS_DATABASE_CONN
ECTION_MINPOOL

Minimal connection pool size optio
nal

50

OPENNMS_DATABASE_CONN
ECTION_MAXPOOL

Maximum connection pool size optio
nal

50

OPENNMS_DATABASE_CONN
ECTION_MAXSIZE

Maximum connections optio
nal

50

Table 8. Timeseries storage configuration in opennms.properties.d/_confd.timeseries.properties

Environment
variable

Description Requ
ired

Default value

OPENNMS_TIMESERIE
S_STRATEGY

Used Timeseries storage strategy optio
nal

rrd

OPENNMS_RRD_STORE
BYFOREIGNSOURCE

Store timeseries data by foreign
source instead of the database node
id

optio
nal

true

OPENNMS_RRD_STRAT
EGYCLASS

Java RRD Strategy class optio
nal

org.opennms.netmgt.rrd.rrdtool.
MultithreadedJniRrdStrategy

OPENNMS_RRD_INTER
FACEJAR

Java RRD Interface library optio
nal

/usr/share/java/jrrd2.jar

OPENNMS_LIBRARY_J
RRD2

JRRD2 libray path optio
nal

/usr/lib64/libjrrd2.so

Table 9. SNMP Trap receiver configuration in trapd-configuration.xml

34

Environment variable Description Requir
ed

Default
value

OPENNMS_TRAPD_ADDRESS Listen interface for SNMP Trapd option
al

*

OPENNMS_TRAPD_PORT Port to listen for SNMP Traps option
al

1162

OPENNMS_TRAPD_NEWSUSPEC
TONTRAP

Create new suspect event based Trap recepient for
unknown devices

option
al

false

OPENNMS_TRAPD_INCLUDERA
WMESSAGE

Preserve raw messages in SNMP Traps option
al

false

OPENNMS_TRAPD_THREADS Set maximum thread size to process SNMP Traps option
al

0

OPENNMS_TRAPD_QUEUESIZE Set maximum queue for SNMP Trap processing option
al

10000

OPENNMS_TRAPD_BATCHSIZE Set batch size for SNMP Trap processing option
al

1000

OPENNMS_TRAPD_BATCHINTE
RVAL

Set batch processing interval in milliseconds option
al

500

Table 10. Karaf Shell configuration in org.apache.karaf.shell.cfg

Environment
variable

Description Require
d

Default
value

OPENNMS_karaf_SSH_HOST Listen interface for Karaf shell optional 0.0.0.0

OPENNMS_karaf_SSH_PORT SSH Port for Karaf shell optional 8101

Table 11. Cassandra and Newts configuration in opennms.properties.d/_confd.newts.properties

Environment
variable

Description Requir
ed

Default
value

REPLICATION_FACTOR Set Cassandra replication factor for the newts
keyspace if Newts is used

optiona
l

1

OPENNMS_CASSANDRA_HOS
TNAMES

A comma separated list with Cassandra hosts for
Newts

optiona
l

localhost

OPENNMS_CASSANDRA_KEY
SPACE

Name of the keyspace used by Newts optiona
l

newts

OPENNMS_CASSANDRA_POR
T

Cassandra server port optiona
l

9042

OPENNMS_CASSANDRA_USE
RNAME

Username with access to Cassandra optiona
l

cassandra

OPENNMS_CASSANDRA_PAS
SWORD

Password for user with access to Cassandra optiona
l

cassandra

35

Directory Conventions

Mountpoint Description

/opt/opennms-
overlay

Allows to overwrite files relative to /opt/opennms

/opennms-data Directory with RRDTool/JRobin files and generated PDF reports sent to the file
system

5.4.2. Minion

Startup Arguments

Argume
nt

Description

-h Display help with available arguments.

-c Start Minion and use environment credentials to register Minion on OpenNMS Horizon.

-s One-time command to initialze an encrypted keystore file with credentials in
/keystory/scv.jce.

-f Initialize and start Minion in foreground.

Environment Variables

Table 12. Generic Minion settings

Environment
variable

Description Require
d

Default value

MINION_ID Unique Minion identifier optional generated UUID

MINION_LOCATION Name of the location the Minion is associated required -

Table 13. Settings when ActiveMQ is used

Environment
variable

Description Require
d

Default
value

OPENNMS_HTTP_URL Web user interface base URL for REST required -

OPENNMS_HTTP_USER User name for the ReST API optional admin

OPENNMS_HTTP_PASS Password for the ReST API optional admin

OPENNMS_BROKER_URL ActiveMQ broker URL required -

OPENNMS_BROKER_USER Username for ActiveMQ authentication optional admin

OPENNMS_BROKER_PASS Password for ActiveMQ authentication optional admin

Apache Kafka Configuration

If you want to use Apache Kafka the environment variable names are converted with a prefix
convention:

36

• Prefix KAFKA_RPC_ will be written to org.opennms.core.ipc.rpc.kafka.cfg

• Prefix KAFKA_SINK_ will be written to org.opennms.core.ipc.sink.kafka.cfg

• Everything behind will be converted to lower case and _ is replaced with .

As an example:

environment:
 - KAFKA_RPC_BOOTSTRAP_SERVERS=192.168.1.1,192.168.1.2

This will create the file org.opennms.core.ipc.rpc.kafka.cfg with the content:

bootstrap.servers=192.168.1.1,192.168.1.2

Directory Conventions

Mountpoint Description

/opt/minion-etc-overlay Allows to overwrite files relative to /opt/minion/etc

/keystore Directory with credentials for encrypted keystore file

5.4.3. Sentinel

Startup Arguments

Argume
nt

Description

-h Display help with available arguments.

-c Start Sentinel and use environment credentials to connect to OpenNMS Horizon.

-s One-time command to initialze an encrypted keystore file with credentials in
/keystory/scv.jce.

-d Start with Karaf in debug mode

-f Initialize and start Sentinel in foreground.

Environment Variables

Table 14. Settings when ActiveMQ is used

Environment
variable

Description Require
d

Default
value

OPENNMS_HTTP_URL Web user interface base URL for REST required -

OPENNMS_HTTP_USER User name for the ReST API optional admin

OPENNMS_HTTP_PASS Password for the ReST API optional admin

37

Environment
variable

Description Require
d

Default
value

OPENNMS_BROKER_URL ActiveMQ broker URL required -

OPENNMS_BROKER_USER Username for ActiveMQ authentication optional admin

OPENNMS_BROKER_PASS Password for ActiveMQ authentication optional admin

Directory Conventions

Mountpoint Description

/opt/sentinel-etc-overlay Allows to overwrite files relative to /opt/minion/etc

/keystore Directory with credentials for encrypted keystore file

38

Chapter 6. Minion with custom messaging
system
Minions and OpenNMS Horizon communicate via a messaging system. By default, an embedded
ActiveMQ broker is used. OpenNMS Horizon is designed to work with different messaging systems
and based on the system requirements or workload, an alternative to ActiveMQ can be used. In
general, the communication between OpenNMS Horizon and Minion is provided by two patterns:

• Remote Producer Calls (RPCs) are used to issue specific tasks (such as a request to poll or
perform data collection) from an OpenNMS Horizon instance to a Minion in a remote location.

◦ These calls are normally self-contained and include all of the meta-data and information
required for them to be performed.

• The Sink pattern is used to send unsolicited messages (i.e. Syslog, SNMP Traps or Flows) received
from a Minion to an OpenNMS Horizon instance

High level components used for communication between OpenNMS Horizon and Minions

This section describes how you can setup OpenNMS Horizon to use other supported messaging
systems for the communication with Minions.

6.1. Setup using Apache Kafka
This section describes how to use Apache Kafka as a messaging system between OpenNMS Horizon
and Minions in a remote location.

6.1.1. Objectives

• Configure OpenNMS Horizon to forward RPC to a Minion

• Configure Minion to forward messages over the Sink component to an OpenNMS Horizon
instance

• Disable the embedded Active MQ message broker on the Minion.

• Verify the functionality on the Minion using the health:check command and ensure the Minion
is registered and monitored in the OpenNMS Horizon web interface

6.1.2. Before you begin

The following requirements should be satisfied before you can start with this tutorial:

39

• At least a minimal Kafka system up and running If you want to start in a lab, the Apache Kafka
Quickstart guide is a good starting point

• An instance running with OpenNMS Horizon and at least one deployed Minion

• Communication between OpenNMS Horizon, Minion and Apache Kafka is possible on TCP port
9092

Network topology used for the following configuration example


The example is used to describe how the components need to be configured. IP
addresses and hostnames need to be adjusted accordingly.


You can add more than one Kafka server to the configuration. The driver will
attempt to connect to the first entry. If that is successful the whole broker topology
will be discovered and will be known by the client. The other entries are only used
if the connection to the first entry fails.

6.1.3. Configure OpenNMS Horizon

Step 1: Set Kafka as RPC strategy and add Kafka server

cat <<EOF >${OPENNMS_HOME}/etc/opennms.properties.d/kafka.properties
org.opennms.core.ipc.rpc.strategy=kafka
org.opennms.core.ipc.rpc.kafka.bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-
3:9092
EOF

Step 2: Set Kafka as Sink strategy and add Kafka server

40

https://kafka.apache.org/20/documentation.html#quickstart
https://kafka.apache.org/20/documentation.html#quickstart

cat <<EOF >>${OPENNMS_HOME}/etc/opennms.properties.d/kafka.properties
Ensure that messages are not consumed from Kafka until the system has fully
initialized
org.opennms.core.ipc.sink.initialSleepTime=60000
org.opennms.core.ipc.sink.strategy=kafka
org.opennms.core.ipc.sink.kafka.bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-
3:9092
EOF

Step 3: Restart OpenNMS Horizon

systemctl restart opennms

6.1.4. Configure Minion

Step 1: Disable ActiveMQ for RPC and Sink

Disable ActiveMQ on Minion startup

cat <<EOF >${MINION_HOME}/etc/featuresBoot.d/disable-activemq.boot
!minion-jms
!opennms-core-ipc-rpc-jms
!opennms-core-ipc-sink-camel
EOF

Step 2: Enable Kafka for RPC and Sink

cat <<EOF >${MINION_HOME}/etc/featuresBoot.d/kafka.boot
opennms-core-ipc-rpc-kafka
opennms-core-ipc-sink-kafka
EOF

Step 3: Configure Kafka server

Add Kafka server for RPC communication

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.rpc.kafka.cfg
bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-3:9092
acks=1
EOF

41

Add Kafka server for Sink communication

cat <<EOF >${MINION_HOME}/etc/org.opennms.core.ipc.sink.kafka.cfg
bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-3:9092
acks=1
EOF

Step 4: Restart Minion to apply changes

systemctl restart minion

Step 5: Verify Kafka configuration and connectivity

Login to Karaf Shell

ssh admin@localhost -p 8201

Test if Kafka RPC and Sink feature is started

feature:list | grep opennms-core-ipc-rpc-kafka
opennms-core-ipc-rpc-kafka | 25.0.0 | x | Started

feature:list | grep opennms-core-ipc-sink-kafka
opennms-core-ipc-sink-kafka | 25.0.0 | x | Started

Test connectivity to Kafka

health:check
Verifying the health of the container

Connecting to OpenNMS ReST API [Success]
Verifying installed bundles [Success]
Connecting to Kafka from RPC [Success]
Connecting to Kafka from Sink [Success]

=> Everything is awesome

Step 6. Verify Minion functionality

Ensure the Minion is registered in the OpenNMS Horizon web interface

1. Login as Administrator

2. Configure OpenNMS

3. Manage Minions

4. Minion should be registered and should be shown as "Up"

5. Click on the name of the Minion and go to the node detail page

42

6. Verify if the services on the loopback interface JMX-Minion, Minion-Heartbeat, Minion-RPC are
monitored and "Up"

6.1.5. Tuning Apache Kafka

The configuration is shipped with sane defaults, but depending on the size and network topology it
can be required to tune the Apache Kafka environment to meet certain needs. Apache Kafka options
can be set directly in the org.opennms.core.ipc.rpc.kafka.cfg and
org.opennms.core.ipc.sink.kafka.cfg file.

Alternatively: Kafka producer/consumer options can be set by defining additional system
properties prefixed with org.opennms.core.ipc.rpc.kafka and org.opennms.core.ipc.sink.kafka.

You can find available configuration parameters for Kafka here:

• Producer Configs for RPC communication

• New Consumer Configs for Sink communication

Multiple OpenNMS Horizon instances

Topics will be automatically created and are prefixed by default with OpenNMS. If you want to use an
Apache Kafka cluster with multiple OpenNMS Horizon instances, the topic prefix can be customized
by setting org.opennms.core.ipc.rpc.kafka.group.id and org.opennms.core.ipc.sink.kafka.group.id
to a string value which identifies your instance.

Tips for Kafka


For Kafka RPC, the number of partitions should always be greater than the
number of minions at a location. When there are multiple locations, partitions >=
max number of minions at a location.


By default, Kafka RPC supports buffers greater than >1MB by splitting large buffer
into chunks of 900KB(912600). Max buffer size (900KB, by default) can be
configured by setting org.opennms.core.ipc.rpc.kafka.max.buffer.size (in bytes).


Default time to live (time at which request will expire) is 20000 msec (20sec). It can
be changed by configuring system property org.opennms.core.ipc.rpc.kafka.ttl in
msec.

43

https://kafka.apache.org/10/documentation.html#producerconfigs
https://kafka.apache.org/10/documentation.html#newconsumerconfigs

Chapter 7. Install other versions than stable
Installation packages are available for different releases of OpenNMS Horizon or Minion. You will
need to choose which release you would like to run and then configure your package repository to
point to that release. Configuring a package repository will enable you to install and update the
software by using standard Linux software update tools like yum and apt.

The following package repositories are available:

Table 15. OpenNMS package repositories

Release Description

stable Latest stable release. This version is recommended for all users.

testing Release candidate for the next stable release.

snapshot Latest successful development build, the "nightly" build.

branches/${BRANCH-
NAME}

Install from a specific branch name for testing a specific feature that is under
development. Available branches can be found in https://yum.opennms.org/
branches/ or https://debian.opennms.org/dists/branches/.

To install a different release the repository files have to be installed and manually modified.

In Debian systems modify the repository file in /etc/apt/sources.list.d/opennms.list.

deb https://debian.opennms.org snapshot main①
deb-src https://debian.opennms.org snapshot main①
EOF
wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -
apt update

① Change from stable to snapshot

On RHEL systems you can install a snapshot repository with:

yum -y install https://yum.opennms.org/repofiles/opennms-repo-snapshot-
rhel7.noarch.rpm


For branches use repofiles/opennms-repo-branches-${branch-name}-

rhel7.noarch.rpm.

The installation procedure is the same as with the stable version.

44

https://yum.opennms.org/branches/
https://yum.opennms.org/branches/
https://debian.opennms.org/dists/branches/

Chapter 8. Setup Minion with a config file
Beside manually configuring a Minion instance via the Karaf CLI it is possibleto modify and deploy
its configuration file through configuration management tools. The configuration file is located in
${MINION_HOME}/etc/org.opennms.minion.controller.cfg. All configurations set in Karaf CLI will be
persisted in this configuration file which can also be populated through configuration management
tools.

Configuration file for Minion

id = 00000000-0000-0000-0000-deadbeef0001
location = MINION
broker-url = tcp://myopennms.example.org:61616
http-url = http://myopennms.example.org:8980/opennms

The Minion needs to be restarted when this configuration file is changed.


In case the credentials needs to be set through the CLI with configuration
management tools or scripts, the ${MINION_HOME}/bin/client command can be used
which allows to execute Karaf commands through the Linux shell.

45

Chapter 9. Running in non-root
environments
This section provides information running OpenNMS Horizon and Minions processes in non-root
environments. Running with a system user have restricted possibilites. This section describes how
to configure your Linux system related to:

• sending ICMP packages as an unprivileged user

• receiving Syslog on ports < 1023, e.g. 514/udp

• receiving SNMP Trap on ports < 1023,e.g. 162/udp

9.1. Send ICMP as non-root
By default, Linux does not allow regular users to perform ping operations from arbitrary programs
(including Java). To enable the Minion or OpenNMS Horizon to ping properly, you must set a sysctl
option.

Enable User Ping (Running System)d

run this command as root to allow ping by any user (does not survive reboots)
sysctl net.ipv4.ping_group_range='0 429496729'

If you wish to restrict the range further, use the GID for the user the Minion or OpenNMS Horizon
will run as, rather than 429496729.

To enable this permanently, create a file in /etc/sysctl.d/ to set the range:

/etc/sysctl.d/99-zzz-non-root-icmp.conf

we start this filename with "99-zzz-" to make sure it's last, after anything else
that might have set it
net.ipv4.ping_group_range=0 429496729

9.2. Trap reception as non-root
If you wish your Minion or OpenNMS Horizon to listen to SNMP Traps, you will need to configure
your firewall to port forward from the privileged trap port (162) to the Minion’s default trap
listener on port 1162.

46

Forward 162 to 1162 with Firewalld

enable masquerade to allow port-forwards
firewall-cmd --add-masquerade
forward port 162 TCP and UDP to port 1162 on localhost
firewall-cmd --add-forward-port=port=162:proto=udp:toport=1162:toaddr=127.0.0.1
firewall-cmd --add-forward-port=port=162:proto=tcp:toport=1162:toaddr=127.0.0.1

9.3. Syslog reception as non-root
If you wish your Minion or OpenNMS Horizon to listen to syslog messages, you will need to
configure your firewall to port forward from the privileged Syslog port (514) to the Minion’s default
syslog listener on port 1514.

Forward 514 to 1514 with Firewalld

enable masquerade to allow port-forwards
firewall-cmd --add-masquerade
forward port 514 TCP and UDP to port 1514 on localhost
firewall-cmd --add-forward-port=port=514:proto=udp:toport=1514:toaddr=127.0.0.1
firewall-cmd --add-forward-port=port=514:proto=tcp:toport=1514:toaddr=127.0.0.1

47

Chapter 10. Use R for statistical computing
R is a free software environment for statistical computing and graphics. OpenNMS Horizon can
leverage the power of R for forecasting and advanced calculations on collected time series data.

OpenNMS Horizon interfaces with R via stdin and stdout, and for this reason, R must be installed on
the same host as OpenNMS Horizon. Note that installing R is optional, and not required by any of
the core components.

 The R integration is not supported on Microsoft Windows systems.

10.1. Install R on RHEL
Ensure the dnf plugin config-manager is installed

dnf -y install dnf-plugins-core

Enable the PowerTools repository for R dependencies

dnf config-manager --set-enabled PowerTools

Install the epel-release repository with R packages

dnf -y install epel-release

Install R-core package

dnf -y install R-core

10.2. Install R on Debian
Install R

apt -y install r-recommended

48

https://www.r-project.org/

Chapter 11. Using a different Time Series
Storage
OpenNMS Horizon stores performance data in a time series storage which is by default JRobin. For
different scenarios it is useful to switch to a different time series storage. The following
implementations are supported:

Table 16. Supported Time Series Databasees

JRobin JRobin is a clone of RRDTool written in Java, it does not fully cover the latest
feature set of RRDTool and is the default when you install OpenNMS Horizon.
Data is stored on the local file system of the OpenNMS Horizon node.
Depending on I/O capabilities it works good for small to medium sized
installations.

RRDTool RRDTool is active maintained and the de-facto standard dealing with time
series data. Data is stored on the local file system of the OpenNMS Horizon
node. Depending on I/O capabilities it works good for small to medium sized
installations.

Newts Newts is a database schema for Cassandra. The time series is stored on a
dedicated Cassandra cluster which gives growth flexibility and allows to
persist time series data in a large scale.

This section describes how to configure OpenNMS Horizon to use RRDTool and Newts.


The way how data is stored in the different time series databases makes it
extremely hard to migrate from one technology to another. Data loss can’t be
prevented when you switch from one to another.

11.1. RRDtool
In most Open Source applications, RRDtool is often used and is the de-facto open standard for Time
Series Data. The basic installation of OpenNMS Horizon comes with JRobin but it is simple to switch
the system to use RRDtool to persist Time Series Data. This section describes how to install RRDtool,
the jrrd2 OpenNMS Java Interface and how to configure OpenNMS Horizon to use it.

11.1.1. Install RRDTool on RHEL

 Following this guide does not cover data migration from JRobin to RRDTool.


To install jrrd2 enable the OpenNMS YUM repository ensure the repositories are
enabled. You can enable them with dnf config-manager --enable opennms-repo-
stable-*.

49

https://wiki.opennms.org/wiki/JRobin
http://opennms.github.io/newts/
http://cassandra.apache.org
http://oss.oetiker.ch/rrdtool

Step 1: Install RRDTool and the jrrd2 interface

Installation on RHEL

dnf -y install rrdtool jrrd2

Step 2: Configure OpenNMS Horizon to use RRDTool

cat << EOF | sudo tee /opt/opennms/etc/opennms.properties.d/timeseries.properties
org.opennms.rrd.strategyClass=org.opennms.netmgt.rrd.rrdtool.MultithreadedJniRrdStrate
gy
org.opennms.rrd.interfaceJar=/usr/share/java/jrrd2.jar
opennms.library.jrrd2=/usr/lib64/libjrrd2.so
org.opennms.web.graphs.engine=rrdtool # optional, unset if you want to keep Backshift
as default
EOF


The visualization with the graph engine is optional. You can still use the default
graphing engine backshift by not setting the org.opennms.web.graphs.engine

property and use the system default.

Step 3: Restart OpenNMS Horizon and verify setup

find /opt/opennms/share/rrd -iname "*.rrd"

With the first data collection, RRDTool files with extension .rrd will be created. The JRobin files with
extension .jrb are not used anymore and are not deleted automatically.

11.1.2. Reference

The following configuration files have references to the RRDTool binary and may be changed if you
have a customized RRDTool setup.

Table 17. References to the RRDtool binary

Configuration file Property

opennms.properties rrd.binary=/usr/bin/rrdtool

response-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

response-graph.properties command.prefix=/usr/bin/rrdtool
info.command=/usr/bin/rrdtool

snmp-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

snmp-graph.properties command.prefix=/usr/bin/rrdtool
command=/usr/bin/rrdtool info

50

11.1.3. Install RRDTool on Debian

 Following this guide does not cover data migration from JRobin to RRDTool.


A more current version of RRDTool is in the OpenNMS YUM repository. The
provided versions can be shown with apt show rrdtool. This guide uses the
RRDTool provided in the OpenNMS repository. When using the Debian/Ubuntu
provided RRDTool package verify the path to the rrdtool binary file.

Step 1: Install RRDTool and the jrrd2 interface

Installation on RHEL

apt -y install rrdtool jrrd2

Step 2: Configure OpenNMS Horizon to use RRDTool

cat << EOF | sudo tee
/usr/share/opennms/etc/opennms.properties.d/timeseries.properties
org.opennms.rrd.strategyClass=org.opennms.netmgt.rrd.rrdtool.MultithreadedJniRrdStrate
gy
org.opennms.rrd.interfaceJar=/usr/share/java/jrrd2.jar
opennms.library.jrrd2=/usr/lib/jni/libjrrd2.so
org.opennms.web.graphs.engine=rrdtool # optional, unset if you want to keep Backshift
as default
EOF


The visualization with the graph engine is optional. You can still use the default
graphing engine backshift by not setting the org.opennms.web.graphs.engine

property and use the system default.

Step 3: Restart OpenNMS Horizon and verify setup

find /usr/share/opennms/share/rrd -iname "*.rrd"

With the first data collection, RRDTool files with extension .rrd will be created. The JRobin files with
extension .jrb are not used anymore and are not deleted automatically.

11.1.4. Reference

The following configuration files have references to the RRDTool binary and may be changed if you
have a customized RRDTool setup.

Table 18. References to the RRDtool binary

51

Configuration file Property

opennms.properties rrd.binary=/usr/bin/rrdtool

response-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

response-graph.properties command.prefix=/usr/bin/rrdtool
info.command=/usr/bin/rrdtool

snmp-adhoc-graph.properties command.prefix=/usr/bin/rrdtool

snmp-graph.properties command.prefix=/usr/bin/rrdtool
command=/usr/bin/rrdtool info

11.2. Newts
Newts is a time-series data store based on Apache Cassandra. Newts is a persistence strategy, that
can be used as an alternative to JRobin or RRDtool.


It is currently not supported to initialize the Newts keyspace from Microsoft
Windows Server operating system. Microsoft Windows based Cassandra server can
be part of the cluster, but keyspace initialization is only possible using a _Linux-
_based system.

11.2.1. Setting up Cassandra


Cassandra is only required when using Newts. If your OpenNMS Horizon system is
not using Newts, you can skip this section.

It is recommended to install Cassandra on a dedicated server, but is also possible to run a node on
the OpenNMS Horizon server itself. This installation guide describes how to set up a single
Cassandra instance on the same system as OpenNMS Horizon for the purpose of evaluating and
testing Newts. These steps are not suitable for a production Cassandra Cluster. If you already have a
running cluster you can skip this section.

For further information see Cassandra Getting Started Guide. Before setting up a production cluster
make sure to consult Anti-patterns in Cassandra.

RHEL

This section describes how to install the Cassandra 3.11.x release on a RHEL based systems for
Newts. The first step is to add the DataStax community repository and install the required GPG Key
to verify the integrity of the RPM packages. After that install the package with yum and the
Cassandra service is managed by Systemd.

 This description was built on CentOS 8.

 Cassandra 3.x requires Java 8.

52

http://newts.io/
http://cassandra.apache.org/
http://www.opennms.org/wiki/JRobin
http://oss.oetiker.ch/rrdtool/
https://cassandra.apache.org/doc/latest/getting_started/index.html
https://docs.datastax.com/en/dse-planning/doc/planning/planningAntiPatterns.html

Add the Cassandra repository

vi /etc/yum.repos.d/cassandra.repo

Content of the cassandra.repo file

[cassandra]
name=Apache Cassandra
baseurl=https://www.apache.org/dist/cassandra/redhat/311x/
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://www.apache.org/dist/cassandra/KEYS

Accept the GPG keys and install Cassandra

dnf install -y cassandra

Enable Cassandra to start on system boot

chkconfig cassandra on

Start cassandra service

service cassandra start


Verify whether the Cassandra service is automatically started after rebooting the
server.


There is a bug reported with Cassandra running with Systemd documented in
CASSANDRA-15273.

Debian

This section describes how to install the latest Cassandra 3.0.x release on a Debian-based system for
Newts. The first step is to add the DataStax community repository and install the required GPG Key
to verify the integrity of the DEB packages. After that install the packages with apt and the
Cassandra service is added to the runlevel configuration.

 This description was built on Debian 8.3 and Ubuntu 16.04 LTS.

 Cassandra 3.x requires Java 8+.

Add the DataStax repository

vi /etc/apt/sources.list.d/cassandra.sources.list

53

https://issues.apache.org/jira/browse/CASSANDRA-15273

Content of the cassandra.sources.list file

deb https://debian.datastax.com/community stable main

Install GPG key to verify DEB packages

wget -O - https://debian.datastax.com/debian/repo_key | apt-key add -

Install latest Cassandra 3.0.x package

apt-get update
apt-get install dsc30

The Cassandra service is added to the runlevel configuration and is automatically started after
installing the package.


Verify whether the Cassandra service is automatically started after rebooting the
server.

Microsoft Windows

This section describes how to install the latest Cassandra 3.0.x release on a Microsoft Windows
Server based systems for Newts. The first step is to download the graphical installer and register
Cassandra as a Windows Service so it can be manged through the Service Manager.

 This description was built on Windows Server 2012.

 Cassandra 3.x requires Java 8+.

Download the DataStax graphical installer for Cassandra from PowerShell or a Browser

cd C:\Users\Administrator\Downloads
Invoke-WebRequest https://downloads.datastax.com/community/datastax-community-
64bit_3.0.6.msi -Outfile datastax-community-64bit_3.0.6.msi

Run the Windows Installer file from PowerShell or through Windows Explorer and follow the setup
wizard to install. During the installation, accept the options to automatically start the services. By
default the DataStax Server, OpsCenter Server and the OpsCenter Agent will be automatically
installed and started.


The DataStax OpsCenter Server is only required to be installed once per Cassandra
Cluster.


If you install the DataStax OpsCenter make sure you have Chrome or Firefox
installed.

54

11.2.2. Configure OpenNMS Horizon

Once Cassandra is installed, OpenNMS Horizon can be configured to use Newts.

cat << EOF | sudo tee /opt/opennms/etc/opennms.properties.d/timeseries.properties
Configure storage strategy
org.opennms.rrd.storeByForeignSource=true
org.opennms.timeseries.strategy=newts

Configure Newts time series storage connection
org.opennms.newts.config.hostname=$ipaddress$
org.opennms.newts.config.keyspace=newts
org.opennms.newts.config.port=9042
EOF


The org.opennms.newts.config.hostname property also accepts a comma separated
list of hostnames and or IP addresses.

Once Newts has been enabled, you can initialize the Newts schema in Cassandra with the following:

Initialize Newts keyspace in Cassandra

${OPENNMS_HOME}/bin/newts init

Optionally, you can now connect to your Cassandra cluster and verify that the keyspace has been
properly initialized:

Verify if the keyspace is initialized with cqlsh

cqlsh
use newts;
describe table terms;
describe table samples;

Restart OpenNMS Horizon to apply the changes.

55

	Installation Guide
	Table of Contents
	Chapter 1. Compatibility
	Chapter 2. Setting up a basic OpenNMS Horizon
	2.1. Objectives
	2.2. Before you begin
	2.3. Installing on RHEL
	2.4. Installing on Debian
	2.5. Installing on Windows

	Chapter 3. Monitor isolated location with Minion
	3.1. Objectives
	3.2. Before you begin
	3.3. Installing on RHEL
	3.4. Installing on Debian

	Chapter 4. Sentinel
	4.1. Before you begin
	4.2. Installing on RHEL
	4.3. Installing on Debian

	Chapter 5. Run with Docker
	5.1. Objectives
	5.2. Before you begin
	5.3. Quickstart service stack
	5.4. Configuration Reference

	Chapter 6. Minion with custom messaging system
	6.1. Setup using Apache Kafka

	Chapter 7. Install other versions than stable
	Chapter 8. Setup Minion with a config file
	Chapter 9. Running in non-root environments
	9.1. Send ICMP as non-root
	9.2. Trap reception as non-root
	9.3. Syslog reception as non-root

	Chapter 10. Use R for statistical computing
	10.1. Install R on RHEL
	10.2. Install R on Debian

	Chapter 11. Using a different Time Series Storage
	11.1. RRDtool
	11.2. Newts

