Administrators Guide

Copyright (c) 2015 The OpenNMS Group, Inc.

OpenNMS 17.0.0
Last updated 2015-12-01 17:26:19 -05:00

Table of Contents

1. AdMINISTrative WEDINTEITACE ..eutueniniirii ettt et ettt e ettt e e eaea et eneneerantesaenenetstntnsneneseansnsnsnens 1
1.1. Grafana DashbDOard BOX eu ettt ettt ettt ettt et e et e et e et a ettt e n e e et e e eenns 1
0] o1 = 0) o 2 o T ¥ o KPP 1

O B 0] Ui o4 0 2 1o (o) (PSPPI 2
(A D =] 11] £ P TP 4
1.2.3. BOOSTINE DASAICEeneeeee et ettt e ettt et ettt e ettt e et et et e e eaea s e et e en et s e e e an s e eanenns 6
I g 1 = T 22011 =) 7
1.3. JMX CONfIGUIATION GOIIETATOT .. eutenrnrenrneneenenrenenenreentueeenseertneeaenaraeaesnstaeesrnsernstnsessnsesesanreaensensenenseasnnnnne 8
1.3.1. WED DASEA ULIIITY +.eneenininiiiniii i ettt e st e et ettt e et st e et s e et eanensa 8
1.3.2. CLI DASEA UHIIITY . eeenininet ittt ettt e ettt et et ettt e et et e e e ea et e e e e ea et e e enra e e s en e aeeaeaananns 10
B L= 02) o e 16

2. SETVICE ASSUTAIICE .euvvuintiniunininitnententstneaeataeastaeeneataeasentaeaenstaetsensasetsenetsesstsenssssnssstnersesstsesssnsmsensmersensmees 18

N <) T (o 1 10 L (0] - S P P TP SU PPN 18
W O BN £ 11 Y 1 1A () 11 L) TP PPR 18
B B 3oy s N (0 LY () (U L0) PP PPN 18
0 S R 157 1 (o) 11 () 21
N R & ofe) § s NI E: 1LY (0] 41 L0 P PP PP P PP 27
W B T & o0) 2 T3 LY BT 01 () D Lo) TP PPR 29
0 T8 8 0L () 40) 35
20 B) 1 Tof 01 (o 0 L (0) PPN 36
2.1.8. DISKUSAZEMOIUITOT ..euivuinienininieinttea ittt et et sttt en ettt et et st et es st eretatatastaeastnseenstnsenensaneesensen 40
N B D) 1T (o) 1 (0) (P TP PPRR 42
P2 B O D DAY =TT) LU0 o) 1LY () 4 ¥ L0 N 43
20 0 B I 1 001 () 4B L) PPN 46
2.1.12. HOStRESOUTCESWRUNIMOIITOT 1. e titntnenenetrentntnenetetrentneneneteentaeneneneeatsnensnseseesesnsnensesenssnenessessasnensnsensnns 47
b O R T 5 L)1 (o) 1 (o) TP PPRR 49
W20 O 3 5) 20 1 01 (o) 4 L () PP PP 54
B0 O ST 5 0 011 () 4V o) PPN 55
b B LT (03111 0L () 4D L) PRSPPI 56
b O A 6 1eE: 10017 o) 1100) (P TP PPRR 57
0 O T (511 (o) 1 (o) PP PPN 58
2.1.19. TDBCIMOIUEOL teuvtnennenniintinenteanetnttntateanttnentanetsstntaseaaeansenstaseasstntaserseasstseasersetnstaserensstnsensensernsens 60
2.1.20. JDBCStOredPrOCEAUIEIVIONUTOT tuuruenieninienentneeenteet ittt ettt et en et er et eaesstaereraeantastaearnseenstnsenenseneesenes 61
W O B 1) {60 10 Lol 1Y (0] 4 L) TP PPRR 63
N BV [0) () e E: U2 1=t N LY () 4D L o) PP PP 65
20 B T e =1)1 (o) 0 L) PPN 66
b 2 s =) s 1 (o) 4 (0 PP PPPPTTPIN 67
W BT (=) ta Lo 1o LT 1LY (o) 1 (o) P TP PPRR 68
2.1.26. NetScalerGroupHEaltNIMONITOL . ..cuin ettt ettt ettt e et e e ea e e et ra e en e s e reneneenenes 70
20 A\ 0131 o) 4 N L) PPN 71
N B T\ L1 0] () D Lo T PP PP P PP 72
A WA 0] 11 BF: R () ¢ 1oL LY (o) (UL (o) TP PPR 72
2.1.30. OpenManageChasSISIVIOIITOT uu ettt ettt e ettt e ea e et e enea et e enen e et naenen e reraenenennenes 74
0 S B B =) 03 () 40 75
B S Y o0 11 (0} 1 L 10 PPN 76
W B R T o =Y o] (=01 (0] 4D L) P TP PPRR 77

2.1.34.

2 Lo LD N D L DL/ (0 4B 0 78

2 0 1 T 41 011/ (0 4110 80

B B LT} a D Y o1 () 4D Lo P PP 80
0 S 11 011 (o) B () 89
e R B0y 0L (o) 41 o) PP PT RPN 90

B B 1 B 0 =V () 2 1 T o) V1 (0) (TP PPRR 92

b B oy 11 (o) 1 {0) PP PPN 94
2.1.471. SYStEIMEXECULEMOIITOL .oueuininieiiiin ittt ettt et ettt et et et e e en e e e et enense e tenensaenes 95
2.1.42. VINWaT@CIMIMOIITOT cuututniuinieiateea et ee et et sttt e sttt e st et st eaes st eaetasaata st eassasanenstnsaensenensensen 96
B T 1L =N 3L () 00) N 98
2.1.44. WIN32SIVICEMOIUTOL 1 1uuiuiuniniiniainiininintiiniieten ittt ettt et ea e eaeastaeastastaetsensaetsenstsensanersensans 99

N S €121)1 (o) 1 L) PP PPPPRPTNY 100

TR A =) 0 102
RI BN o 100 aa) o) i Ve A7) o | PP PPRPRIN 102
3.2. SOUTCES OF EVEIILS 1.uevuiintinniiniintiiie ettt et ettt ettt et e b et et ea et et s ta et et e tn et e b eansan et eaneansansereeansens 102
TS T 1 0 U= 7 L2 1 103
R I A) L V01 0 (o) R PPN 103
Z N Y 0) A3 (0] 411 - PP PPN 104
3 T 50U 0 D0 0o 104
0 1) g o] 0) 5 104
T T =) 8 111021) (0 PP PPOTO PPN 104
4.2.2. AAAressing SCalabilityeeii ettt e e et aaeeaas 106
O I €] 01 4T =) =T« P PPN 107
4.3.1. Provisioning the SNMP CONFIGUIATION t.uvvuiiniinniiniiniiniiiiiiiiiii ittt e aa e ea e e ens 107
4.3.2. AUTOINATIC DISCOVETY 1eutunininininitnenttneten et ettt et en st et tn et ta it eatasteatasaaenstaeaenstaetsansaenstnereenstnererneenns 109
4.3.3. ENNANCed DireCtead DiSCOVETY . ..uuuuentt ettt ettt e et ettt e e te et e e ea et taenen e e reasaeneneenenaaanenns 109
4.4, TMNPOTE HANALETS ..entiiiee ettt e ettt et ettt ettt et e ea e e et e enea et raenen e e eanaenenseennaenenee 111
441, FIle HANAIET ovviniininiiiiiiii e e e e aae 111
442 HTTP HANALET .ouieniniiiiiiiii ittt ettt ettt st e et s e et st e e e s e et s e saen st ebenstaeresnaanss 111
0 T D 1 S0 5 4T L N 111
4.5. ProviSiONINg EXAIMPLES . cuuenintii ittt ettt et ettt e e et ettt et e et e enea et ra e en e e e n e en e e aaenanae 112
4.5.1. BASIC PrOVISIONIIIG . euvutninitiiiin ettt ettt ettt ettt e e ettt e ea s e et e enea et taeneneaeneenenen 112
4.5.2. Advanced Provisioning EXaMPLecuiuniniiiiniiiiiiiii e et e e e e 115
e ¥ o () - S PP P PR TTRN 120
T B D D1 S U - () N 120
4.6.2. RANCID AGADPLET ..euuiuniiniiniuniiniinttntaettitn ettt et taettetsstaetsertetastaereanstaseteretsstnserseaetnsensersensnns 120
4.7. Integrating With PTOVISIONmcuuuininiiiniiiiii ettt st ettt et e et st et s e e aneans 120
4.7.1. Provisioning Groups OF NOGESueniniie ittt ettt ettt ettt ea e ee e e e saenenaeneeaenenns 120
B o5 | 111 o) [PPN 120
4.8. Provisioning Single Nodes (QUIiCK Add NOGE)cuuiuiiniiiiniiiiiiiiiiniiiiiiiiin e ans 122
4.9. Fine Grained Provisioning USING PrOVISION.DL.......uuun ettt ee ettt e res et eenesreretaeneneseenaaanenns 122
4.9.1. Create @ NEW TeQUISITION eu ettt et e e e ettt e et et e e ee e et e e ente et e enaa e e saeaenanreresaeneneeneaeaanenns 122
4.10. Yet Other API EXAIMPLES .. .uinuiiin ittt ettt e ettt et ettt et a e et e e enen et ra e en e e eanaenenseennaanenss 124
IO F L8 1 o T R 2 010 o £ S PP PPRPPPIN 125
I B O A) 74 (= PPN 125
RIVAENe (6 BF: Wol 1 1 (00 1 =) o10) o A TP PPRPRN 125
5.3. USE Of JASPEISOFt STUAIO . ueutvntntenininiei et e et et e sttt e ettt e e et et et ee s st entaeensasensansnrenensanranensansenansenens 126
5.3.1. Connect to the OPenNMS Databhaseouiuinininiiiii et eaens 126
5.3.2. Use Measurements Datasource and HelPerS......cc.viiuiiniiiiiiiiiiiiiiiii ettt ans 126
5.4. ACCeSSING PerfOrTNANCE DaAta...ucuie ettt ettt ettt et ettt e e ea e et e en e e e eaeneneaanens 127

o R () £ 127

R A -} ¢ V1 =1 1<) o S PPN 128

5.5, Helper MEtNOOS ...ttt ettt et ettt e e e et r e e e et r e eean 128
5.5.1. Usage Of the INTerface QeSCIIPTOT .. .uuuienin ettt ettt et e en st ettt ere e eeen et eeerneeaennrneeasnseneans 129
5.5.2. Usage of the N0 SOUICE AESCIIPIOT ..vuiuuiuiuniniiininiiietieeer ettt ettt ettt e e st eae e steatnseaensaneans 130
5.5.3. Usage Of the INterface QeSCIiPTOT ... uu ettt ettt ettt ettt e e et e e e e e s e et e enee e earaenenenanans 130
LR 0 0 S 131

LTSI 1 4L 1) 4 131

6. ENNANCEA LINKA ouiniiniiiiniiiii ettt et st et s et st e e e st et st e e et st e b et e b e eanes 132

LT 53 4 g0 D = =) (1o) 132

6.2. LAYET 2 LINK DISCOVETY . ..ttettiiiinieiet ettt ettt ettt e e e e et e enea e et e enea et raenen e ennneneneneanns 133
6.2.1. LLDP DISCOVETY .eueninetininininitiien ettt ettt et ettt et e eaea sttt enea et e eneneasattaenensasentarnenensennnens 133
6.2.2. CDP DISCOVETY .ueuerntntunentnetnenttnentnetenstueatsstentneetnstneeensanestnseenstnetetsstaetetneaetsstnesetsstaessmsemsnstneens 137
6.2.3. Transparent Bridge DISCOVETTYucueutuieti ettt ettt et ettt e et e et e e ea et tenen e reaearaaneneaenans 140

6.3. LAYET 3 LINK DISCOVETY . .ttetiiiitnieie ettt ettt e ettt e e ettt e e a e e et eaenea e et e enea et raenen e enannenenaaneanns 146
6.3, 1. OSPE DISCOVEIY c.euininttiniiintnitttt ettt ettt ettt en e e ettt ea ettt eaenea e tetaeneneasatetaenensarentarnenensenenens 146
6.3.2. IS-IS DISCOVETY . ueueutntineninetentt ettt en et eata et ea e eaea st ea s ea s e es s aasaenstaetenstaertneanesstaesetsstensnnsensnseneens 148

A 0] 1) ¢ L (o) K TP UT PPN 150

0 5 1 S S Y P 150
7.1.1. Standalone HTTPS WIth JEUEY ...uvueninininiiiii ettt ettt e et e e aeaens 150
7.1.2. OPeNNMS @S HTTPS CLBIE. . cuuiuiiniiiniiiniiii ettt et ettt a e st e et st e e e saeasaneans 150
7.1.3. Differences between Java Trust Store and Java K€Y STOTEcueuiueneiieieiee ettt e eens 151
7.1.4. DEDUZEING [PrOPEITIES .oueueninitieie ettt ettt e ettt e ettt et e et e enea et raenen e e nanneneneeaans 151

7.2. resourcecli: simple resource management t00]ccviuiiiiiiiiiiiiiiiiii e 152
0 R T V. 152
7.2.2. SUD-COMIMANA: LIST..euiuniniiiiiiiiii ettt e et e bt e et s e e aneans 153
7.2.3. SUD-COMMANT: SIOW 11uiviiiiiiiiiiiiiiiiii et e st a e st et s e s bt s e easaaeans 153
7.2.4. Sub-commAaNd: AEIETEcuiviniiiiiiiiiiii e 154

785 00)12 154
AR TN B 0] oV =40 =10 (0] o B PP TP PPRPRNE 154
7.3.2. CasSANATA MOTMIEOTIIIE .. cueuenenite ettt ettt e ettt e et e ettt e e a et e e enea et naenen e ennanneneneeaens 156

7.3.3. NEWLS MONITOTIIIE 1.vttiiiiininittii ettt ettt et ettt et ettt e et e et e e e e s et taenenea et enenensaneaens 160

Chapter 1. Administrative Webinterface

1.1. Grafana Dashboard Box

Grafana provides an API key which gives access for 3rd party application like OpenNMS. The Grafana Dashboard Box on
the start page shows dashboards related to OpenNMS. To filter relevant dashboards, you can use a tag for dashboards and

make them accessible. If no tag is provided all dashboards from Grafana will be shown.

The feature is by default deactivated and is configured through opennms.properties.

Table 1. Grafana Dashboard configuration properties
Name Type Description Default

org.opennms.grafanaBox.show Boolean This setting controls whether false
a grafana box showing the
available dashboards is
placed on the landing page.

The two

valid options for this are true

or false.
org.opennms.grafanaBox.hostn String If the box is enabled you also localhost
ame need to specify hostname of

the Grafana server
org.opennms.grafanaBox.port Integer The port of the Grafana 3000

server ReST API
org.opennms.grafanaBox.apike String The API key is needed for the
y ReST calls to work
org.opennms.grafanaBox.tag String When a tag is specified only

dashboards with this given

tag

will be displayed. When no

tag is given all dashboards

will

be displayed
org.opennms.grafanaBox.proto String The protocol for the ReST call http
col can also be specified
org.opennms.grafanaBox.conne Integer Timeout in milliseconds for ~ 500
ctionTimeout g :

getting information from the

Grafana server
org.opennms.grafanaBox.soTim nteger 500
eout

TIP If you have Grafana behind a proxy it is important the org.opennms.grafanaBox.hostname is reachable. This

host name is used to generate links to the Grafana dashboards.

The process to generate an Grafana API Key can be found in the HTTP API documentation. Copy the API Key to

opennms.properties as org.opennms.grafanaBox.apiKey.

1.2. Operator Board

In a network operation center (NOC) the Ops Board can be used to visualize monitoring information. The monitoring

http://grafana.org/
http://docs.grafana.org/reference/http_api/#create-api-token

information for various use-cases are arranged in configurable Dashlets. To address different user groups it is possible to
create multiple Ops Boards.

There are two visualisation components to display Dashlets:
* Ops Panel: Shows multiple Dashlets on one screen, e.g. on a NOC operators workstation

* Ops Board: Shows one Dashlet at a time in rotation, e.g. for a screen wall in a NOC

Dashlet Dashlet

Dashlet Dashlet

Ops Panel

Figure 1. Concept of Dashlets displayed in Ops Panel

Dashlet —

Ops Board

Figure 2. Concept to show Dashlets in rotation on the Ops Board

1.2.1. Configuration

To create and configure Ops Boards administration permissions are required. The configuration section is in admin area of
OpenNMS and named Ops Board Config Web Ui.

dmin

open s i s) oo

20,2014 19:00UTC

Node List Search Outages Path Outages Dashboards» Events Alarms Notifications Assets Reports Charts Suvellance Maps+ Add Node Support

Home / Admin

Descriptions
Configure Users, Groups and On-Call Roles Detailed Documentation on al options can be found on the OpenVS wi.
Configure Users, Groups and On~Call Roles: Add, modify or delete existing users. Groups

System Information

Instrumentation Log Reader contain users. ol are bulk from groupsand povide a mechanism o mpement
lendar-bass

(o
e e Ao o e Gy e

X Canfig Generator Web Ul ALPHA lexww vou can et tht up her. A typica case i i web servr i Isieing on both an mernal

Configure NP Data Collecton per ntrface: Tis nterace il alowyou to corfgre which

s are used in SNMP Data Colecti

age Intefaces and Servces: Maraging an imerface or senvice means tha
erable o e

and a I incerface. f you manage the service on both interfaces, you will get two
Notication Satas: O O © OF (Undate Roxifcarions i it Rl you wank iy ane, unmanage the serice on one of the terfaces
| manage Viows y
. Send Event: Allows you to buld a specific event and send it t the system
and marage plans, called destination
Add Iterface for Scanning paths A destination path s assocated 1 penAMS event. Ech athcn have ay bty
Manage Provisioning Re number of scalationsor arges (usrs,groups,on-call roles)and can sen novicestrough

Gl pagers, € ceer, Each GeSUnalon path Can o Uig0ered y any mumber of OpETIE

mport anel Export Asset | events and may further be associated with specific Interfaces or senvices.

Manage Survillance Cats add and edi "
rage sune and edic polling,
Delete Nod hresholding and o v

Figure 3. Navigation to the Ops Board configuration

Create or modify Ops Boards is described in the following screenshot.

Ops Board Config Web Ul
Use)~ Log out

open

Node List Search Outages Path Outages Dashboards + Events Alarms _Notficatons Assets Reports Maps Add Node
Home / Admin / Ops Board Config Web Ul
ey NocHtsen x| @)
Ops Board configuration e

Tite ocatonen Q) (s ssned) (rreven (D)

Dashlet ((Alarms o priority [5 &) Boost-Priority [0 (&) propertes () B preven (@)
e PR owen 5Q s 5@ e Q5@

. Inc. OpenNMS® s a reg of inc

figure 4. Adding a Dashlet to an existing Ops Board
1. Create a new Ops Board to organize and arrange different Dashlets
2. The name to identify the Ops Board
3. Add a Dashlet to show OpenNMS monitoring information
4. Show a preview of the whole Ops Board
5. List of available Dashlets
6. Priority for this Dashlet in Ops Board rotation, lower priority means it will be displayed more often
7. Duration in seconds for this Dashlet in the Ops Board rotation
8. Change Priority if the Dashlet is in alert state, this is optional and maybe not available in all Dashlets
9. Change Duration if the Dashlet is in alert state, it is optional and maybe not available in all Dashlets
10. Configuration properties for this Dashlet
11. Remove this Dashlet from the Ops Board
12. Order Dashlets for the rotation on the Ops Board and the tile view in the Ops Panel
13. Show a preview for the whole Ops Board

The configured Ops Board can be used by navigating in the main menu to Dashboard Ops Board.

NodeList Search Outages Path Outages Dashboards » Events

Node ID:

Node label lke:

demark of The OpenNMS Group, Inc.

Localhost8580 apennms vaadin-wallbosrg <"NMS CoPYGht © 2002-2014 Tre OperiVhs Group, Inc. OpenMSO i a reg

Figure 5. Navigation to use the Ops Board

1.2.2. Dashlets

Visualization of information is implemented in Dashlets. The different Dashlets are described in this section with all

available configuration parameter.

To allow filter information the Dashlet can be configured with a generic Criteria Builder.

Alarm Details

This Alarm-Details Dashlet shows a table with alarms and some detailed information.

Table 2. Information of the alarms
Field
Alarm ID

Severity

Node label
Alarm count
Last Event Time

Log Message

Description
OpenNMS ID for the alarm

Alarm severity (Cleared, Indeterminate, Normal, Warning,
Minor, Major, Critical)

Node label of the node where the alarm occurred
Alarm count based on reduction key for deduplication
Last time the alarm occurred

Reason and detailed log message of the alarm

The Alarm Details Dashlet can be configured with the following parameters.

Boost support

Configuration

Alarms

Boosted Severity

Criteria Builder

This Alarms Dashlet shows a table with a short alarm description.

Table 3. Information of the alarm
Field

Time

Node label

UEI

Description
Absolute time since the alarm appeared
Node label of the node where the alarm occurred

OpenNMS Unique Event Identifier for this alarm

The Alarms Dashlet can be configured with the following parameters.

Boost support

Configuration

Charts

This Dashlet displays an existing Chart.

Boost support

Chart

Boosted Severity

Criteria Builder

false

Name of the existing chart to display

http://www.opennms.org/wiki/Chart-configuration.xml

Maximize Width

Maximize Height

Image

This Dashlet displays an image by a given URL.

Boost support
imageUr1l
maximizeHeight

maximizeWidth

KSC

Rescale the image to fill display width

Rescale the image to fill display height

false
URL with the location of the image to show in this Dashlet
Rescale the image to fill display width

Rescale the image to fill display height

This Dashlet shows an existing KSC report. The view is exact the same as the KSC report is build regarding order, columns

and time spans.

Boost support

KSC-Report

Map

This Dashlet displays the geographical map.

Boost support

search

RRD

false

Name of the KSC report to show in this Dashlet

false

Predefined search for a subset of nodes shown in the
geographical map in this Dashlet

This Dashlet shows one or multiple RRD graphs. It is possible to arrange and order the RRD graphs in multiple columns and

rows. All RRD graphs are normalized with a given width and height.

Boost support

Columns
Rows

KSC Report

Graph Width
Graph Height
Timeframe value

Timeframe type

RTC

false
Number of columns within the Dashlet
Number of rows with the Dashlet

Import RRD graphs from an existing KSC report and re-
arrange them.

Generic width for all RRD graphs in this Dashlet
Generic height for all RRD graphs in this Dashlet
Number of the given Timeframe type

Minute, Hour, Day, Week, Month and Year for all RRD
graphs

This Dashlet shows the configured SLA categories from the OpenNMS start page.

http://www.opennms.org/wiki/KSC_Reports
http://www.opennms.org/wiki/Geographical_Maps
http://www.opennms.org/wiki/Geographical_Maps#Searching

Boost support false

Summary

This Dashlet shows a trend of incoming alarms in given time frame.

Boost support Boosted Severity

timeslot Time slot in seconds to evaluate the trend for alarms by
severity and UEL

Surveillance

This Dashlet shows a given Surveillance View.

Boost support false
viewName Name of the configured Surveillance View
Topology

This Dashlet shows a Topology Map. The Topology Map can be configured with the following parameter.

Boost support false
focusNodes Which node(s) is in focus for the topology
provider Which topology should be displayed, e.g. Linkd, VMware
szl Set the zoom level for the topology
URL

This Dashlet shows the content of a web page or other web application, e.g. other monitoring systems by a given URL.

Boost support false

password Optional password if a basic authentication is required
url URL to the web application or web page

username Optional username if a basic authentication is required

1.2.3. Boosting Dashlet

The behavior to boost a Dashlet describes the behavior of a Dashlet showing critical monitoring information. It can raise
the priority in the Ops Board rotation to indicate a problem. This behavior can be configured with the configuration
parameter Boost Priority and Boost Duration. These to configuration parameter effect the behavior on the Ops Board in

rotation.
* Boost Priority: Absolute priority of the Dashlet with critical monitoring information.

* Boost Duration: Absolute duration in seconds of the Dashlet with critical monitoring information.

http://www.opennms.org/wiki/Surveillance_View_%28af%29
http://www.opennms.org/wiki/Topology_Maps

1.2.4. Criteria Builder

The Criteria Builder is a generic component to filter information of a Dashlet. Some Dashlets use this component to filter
the shown information on a Dashlet for certain use case. It is possible to combine multiple Criteria to display just a subset

of information in a given Dashlet.

Table 4. Generic Criteria Builder configuration possibilities

Restriction

Asc
Desc

Between

Contains

Distinct

Eq

Ge

Gt

Ilike
In

Iplike

IsNull

IsNotNull

IsNotNull

Le

Lt

Property

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute
database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

database attribute

Value 1

String

String

String

String

String

String
String

String

String

String

Value 2

String

Description
ascending order
descending order

Subset of data between
value 1 and value 2

Select all data which
contains a given text
string in a given
database attribute

Select a single instance

Select data where
attribute equals (==) a
given text string

Select data where
attribute is greater
equals than (>=) a
given text value

Select data where
attribute is greater
than (>) a given text
value

unknown
unknown

Select data where
attribute matches an
given IPLIKE
expression

Select data where
attribute is null

Select data where
attribute is not null

Select data where
attribute is not null

Select data where
attribute is less equals
than () a given text
value

Select data where
attribute is less than (<)
a given text value

Restriction Property Value 1 Value 2

Le database attribute String -
Like database attribute String -
Limit - Inte ger -
Ne database attribute String -
Not database attribute String -
OrderBy database attribute - -

1.3. JMX Configuration Generator

Description

Select data where
attribute is less equals
than () a given text
value

Select data where
attribute is like a given
text value similar to
SQL like

Limit the result set by
a given number

Select data where
attribute is not equals
(=) a given text value

unknown difference
between Ne

Order the result set by
a given attribute

OpenNMS implements the JMX protocol to collect long term performance data for Java applications. There are a huge

variety of metrics available and administrators have to select which information should be collected. The JMX

Configuration Generator Tools is build to help generating valid complex JMX data collection configuration and RRD graph

definitions for OpenNMS.

This tool is available as CLI and a web based version.

1.3.1. Web based utility

Complex JMX data collection configurations can be generated from a web based tool. It collects all available MBean

Attributes or Composite Data Attributes from a JMX enabled Java application.

The workflow of the tool is:

1. Connect with JMX or JMXMP against a MBean Server provided of a Java application

2. Retrieve all MBean and Composite Data from the application

3. Select specific MBeans and Composite Data objects which should be collected by OpenNMS

4. Generate JMX Collectd configuration file and RRD graph definitions for OpenNMS as downloadable archive

The following connection settings are supported:

» Ability to connect to MBean Server with RMI based JMX

» Authentication credentials for JMX connection

* Optional: JMXMP connection

The web based configuration tool can be used in the OpenNMS Web Application in administration section Admin JMX

Configuration Generator.

Configure JMX Connection

At the beginning the connection to an MBean Server of a Java application has to be configured.

? 1. Service Configuration / 2. MBeans Configuration / 3. OpenNMS Configuration

Service name* OpenNMS-JVM

Host* localhost

Port* | 18980

| Authentication

Skip JVM MBeans

| Skip non-number values
| JMXMP

>

Figure 6. JMX connection configuration window

» Service name: The name of the service to bind the JMX data collection for Collectd

* Host: IP address or FQDN connecting to the MBean Server to load MBeans and Composite Data into the generation tool

» Port: Port to connect to the MBean Server

 Authentication: Enable / Disable authentication for JMX connection with username and password

o Skip non-number values: Skip attributes with non-number values

JMXMP: Enable / Disable JMX Messaging Protocol instead of using JMX over RMI

By clicking the arrow (>) the MBeans and Composite Data will be retrieved with the given connection settings. The data is

loaded into the MBeans Configuration screen which allows to select metrics for the data collection configuration.

Select MBeans and Composite

The MBeans Configuration section is used to assign the MBean and Composite Data attributes to RRD domain specific data

types and data source names.

G

Figure 7. Select MBeans or Composite Data for OpenNMS data collection

The left sidebar shows the tree with the JMX Domain, MBeans and Composite Data hierarchy retrieved from the MBean

Server. To select or deselect all attributes use Mouse right click select/deselect.

The right panel shows the MBean Attributes with the RRD specific mapping and allows to select or deselect specific MBean

Attriubtes or Composite Data Attributes for the data collection configuration.

UsageTmreshoidCount ‘UsageThresholdCrt

ColctonusageThrosh ColeUsageTrvescnt

Figure 8. Configure MBean attributes for data collection configuration

Composito detalls

HE

PoakUsageiax

T e L vy

Figure 9. Configure Composite attributes for data collection configuration
* MBean Name or Composite Alias: Identifies the MBean or the Composite Data object
* Selected: Enable/Disable the MBean attribute or Composite Member to be included in the data collection configuration

* Name: Name of the MBean attribute or Composite Member

Alias: the data source name for persisting measurements in RRD or JRobin file

Type: Gauge or Counter data type for persisting measurements in RRD or JRobin file

The MBean Name, Composite Alias and Name are validated against special characters. For the Alias inputs are validated to

be notlonger then 19 characters and have to be unique in the data collection configuration.

Download and include configuration

The last step is generating the following configuration files for OpenNMS:
* collectd-configuration.xml: Generated sample configuration assigned to a service with a matching data collection group

» jmx-datacollection-config.xml: Generated JMX data collection configuration with the selected MBeans and Composite
Data

» snmp-graph.properties: Generated default RRD graph definition files for all selected metrics
The content of the configuration files can be copy & pasted or can be downloaded as ZIP archive.

If the content of the configuration file exceeds 2,500 lines, the files can only be downloaded as ZIP
archive.

NOTE

1.3.2. CLI based utility

The command line (CLI) based tool is not installed by default. It is available as Debian and RPM package in the official
repositories.

Installation

10

RHEL based installation with Yum

yum install opennms-jmx-config-generator

Debian based installation with apt

apt-get install opennms-jmx-config-generator

It is required to have the Java 8 Development Kit with Apache Maven installed. The mvn binary has to be in the path

environment. After cloning the repository you have to enter the source folder and compile an executable JAR.

cd opennms/features/jmx-config-generator
mvn package

Inside the newly created target folder a file named jmxconfiggenerator-<VERSION>-onejar.jar is present. This file can be
invoked by:

java -jar target/jmxconfiggenerator-17.0.0-SNAPSHOT-onejar.jar

Usage

After installing the the JMX Config Generator the tool’s wrapper script is located in the ${OPENNMS_HOME}/bin directory.

$ cd /path/to/opennms/bin
$./jmx-config-generator

TIP When invoked without parameters the usage and help information is printed.

The JMX Config Generator uses sub-commands for the different configuration generation tasks. Each of these sub-

commands provide different options and parameters. The command line tool accepts the following sub-commands.

Sub-command Description

query Queries a MBean Server for certain MBeans and attributes.
generate-conf Generates a valid jmx-datacollection-config.xml file.
generate-graph Generates a RRD graph definition file with matching graph

definitions for a given jmx-datacollection-config.xml.

The following global options are available in each of the sub-commands of the tool:

Option/Argument Description Default

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging false
purposes.

Sub-command: query

This sub-command is used to query a MBean Server for it’s available MBean objects. The following example queries the

server myserver with the credentials myusername/mypassword on port 7199 for MBean objects in the java.lang domain.

11

./jmx-config-generator query --host myserver --username myusername --password mypassword --port 7199
"java.lang:*"

java.lang:type=ClasslLoading

description: Information on the management interface of the MBean
class name: sun.management.ClassLoadingImpl

attributes: (5/5)

TotallLoadedClassCount

id: java.lang:type=ClasslLoading:TotallLoadedClassCount
description: TotalloadedClassCount

type: long

isReadable: true

isWritable: false

isIs: false

LoadedClassCount

id: java.lang:type=ClasslLoading:LoadedClassCount

description: Loaded(ClassCount

type: int

isReadable: true

isWritable: false

isIs: false

<output omitted>

The following command line options are available for the query sub-command.

Option/Argument Description Default
<filter criteria> A filter criteria to query the MBean -

Server for.

The format is <objectname>[:attribute

name].

The <objectname> accepts the default
JMX object name pattern to identify the
MBeans to be retrieved.

If null all domains are shown.

If no key properties are specified, the
domain’s MBeans are retrieved.

To execute for certain attributes, you
have to add :<attribute name>.

The <attribute name> accepts regular
expressions.

When multiple <filter criteria>are
provided they are OR concatenated.

--host <host> Hostname or IP address of the remote -
JMX host.

--ids-only Only show the ids of the attributes. false

--ignore <filter criteria> Set<filter criteria>toignore while -
running.

--include-values Include attribute values. false

--jmxmp Use JMXMP and not JMX over RMI. false

--password <password> Password for JMX authentication. -

--port <port> Port of JMX service. -

--show-domains Only lists the available domains. true

12

Option/Argument Description Default

--show-empty Includes MBeans, even if they donot false
have attributes.
Either due to the <filter criteria>or
while there are none.

--url <url> Custom connection URL -
<hostname>:<port>
service:jmx:<protocol>:<sap>

service:jmx:remoting-
jmx://<hostname>:<port>

--username <username> Username for JMX authentication. -

-h (--help) Show help and usage information. false

-v (--verbose) Enables verbose mode for debugging false
purposes.

Sub-command: generate-conf

This sub-command can be used to generate a valid jmx-datacollection-config.xml for a given set of MBean objects queried
from a MBean Server.

The following example generate a configuration file myconfig.xml for MBean objects in the java.lang domain of the server
myserver on port 7199 with the credentials myusername/mypassword. You have to define either an URL or a hostname and port
to connect to a JMX server.

jmx-config-generator generate-conf --host myserver --username myusername --password mypassword --port 7199
"java.lang:*" --output myconfig.xml
Dictionary entries loaded: '18'

The following options are available for the generate-conf sub-command.

Option/Argument Description Default

<attribute id> Alist of attribute Ids to be included for -
the generation of the configuration file.

--dictionary <file> Path to a dictionary file for replacing -
attribute names and part of MBean
attributes.

The file should have for each line a
replacement, e.g. Auxillary:Auxil.

--host <host> Hostname or IP address of JMX host. -
--jmxmp Use JMXMP and not JMX over RMI. false
--output <file> Output filename to write generated -

jmx-datacollection-config.xml.

--password <password> Password for JMX authentication. -
--port <port> Port of JMX service -
--print-dictionary Prints the used dictionary to STDOUT. false

May be used with --dictionary

13

Option/Argument

--service <value>

--skipDefaultVM

--skipNonNumber

--url <url>

--username <username>
-h (--help)

-v (--verbose)

Description

The Service Name used as JMX data
collection name.

Skip default JavaVM Beans.

Skip attributes with non-number
values

Custom connection URL
<hostname>:<port>
service:jmx:<protocol>:<sap>

service:jmx:remoting-
jmx://<hostname>:<port>

Username for JMX authentication

Show help and usage information.

Enables verbose mode for debugging

purposes.

Default

anyservice

false

false

false

false

The option --skipDefaultVM offers the ability to ignore the MBeans provided as standard by the JVM and just

create configurations for the MBeans provided by the Java Application itself. This is particularly useful if an

TIP

optimized configuration for the JVM already exists. If the --skipDefaultVM option is not set the generated

configuration will include the MBeans of the JVM and the MBeans of the Java Application.

Check the file and see if there are alias names with more than 19 characters.

IMPORTANT

marked with NAME_CRASH_AS_19_CHAR_VALUE

Sub-command: generate-graph

This errors are

This sub-command generates a RRD graph definition file for a given configuration file. The following example generates a

graph definition file mygraph.properties using the configuration in file myconfig.xml.

./jmx-config-generator generate-graph --input myconfig.xml --output mygraph.properties
reports=java.lang.ClassLoading.MBeanReport, \
java.lang.(ClasslLoading.@TotallLoadeClassCnt.AttributeReport, \
java.lang.ClassLoading.@LoadedClassCnt.AttributeReport, \
java.lang.(ClasslLoading.@UnloadedClassCnt.AttributeReport, \
java.lang.Compilation.MBeanReport, \

<output omitted>

The following options are available for this sub-command.

Option/Argument

--input <jmx-datacollection.xml>

--output <file>

--print-template

Description

Configuration file to use as input to
generate the graph properties file

Output filename for the generated
graph properties file.

Prints the default template.

Default

false

14

Option/Argument Description Default
--template <file> Template file using Apache Velocity -
template engine to be used to generate
the graph properties.
-h (--help) Show help and usage information. false

-v (--verbose)

purposes.

Graph Templates

The JMX Config Generator uses a template file to generate the graphs. It is possible to use a user-defined template. The
option --template followed by a file lets the JMX Config Generator use the external template file as base for the graph

generation. The following example illustrates how a custom template mytemplate.vm is used to generate the graph definition

Enables verbose mode for debugging false

file mygraph.properties using the configuration in file myconfig.xml.

The template file has to be an Apache Velocity template. The following sample represents the template that is used by

./jmx-config-generator generate-graph --input myconfig.xml --output mygraph.properties --template

mytemplate.vm

default:

reports=#foreach($report in $reportsList)
${report.id}if($foreach.hasNext), \
#end

#fend

#tforeach($report in $reportsBody)

HL[HSSHH GG R S S S A] 1 8

#[##114 $report.id

HLCHSSHH SRR R A R S A A] 1 8

report.${report.id}.name=${report.name}

report.${report.id}.columns=${report.graphResources}

report.${report.id}.type=interfaceSnmp

report.${report.id}.command=--title="${report.title}" \

--vertical-label="${report.verticallabel}" \
f#iforeach($graph in $report.graphs)

DEF:${graph.id}={rrd${foreach.count}}:${graph.resourceName}:AVERAGE \

AREA: ${graph.id}#${graph.coloreB} \

LINE2:${graph.id}#${graph.coloreA}:"${graph.description}" \

GPRINT:${graph.id}:AVERAGE:" Avg \\: %8.21f %s" \
GPRINT:${graph.id}:MIN:" Min \\: %8.21f %s" \
GPRINT:${graph.id}:MAX:" Max \\: %8.21f %s\\n" \

#end

#end

The JMX Config Generator generates different types of graphs from the jmx-datacollection-config.xml. The different types

are listed below:

Type

Description

AttributeReport

15

For each attribute of any MBean a graph will be generated.
Composite attributes will be ignored.

http://velocity.apache.org
http://velocity.apache.org

Type

MbeanReport

CompositeReport

CompositeAttributeReport

1.4. Heatmap

Description

For each MBean a combined graph with all attributes of the

MBeans is generated.

Composite attributes will be ignored.

For each composite attribute of every MBean a graph is

generated.

For each composite member of every MBean a combined
graph with all composite attributes is generated.

The Heatmap can be either be used to display unacknowledged alarms or to display ongoing outages of nodes. Each of this

visualizations can be applied on categories, foreign sources or services of nodes. The sizing of an entity is calculated by

counting the services inside the entity. Thus, a node with fewer services will appear in a smaller box than a node with

more services.

The feature is by default deactivated and is configured through opennms.properties.

Table 5. Grafana Dashboard configuration properties

Name Type

org.opennms.heatmap.defaultM String
ode

org.opennms.heatmap.defaulth String
eatmap

org.opennms.heatmap.category String
Filter

org.opennms.heatmap.foreignS String
ourceFilter

Description

There exist two options for
using the heatmap: alarms
and

outages. This option
configures which are
displayed per

default.

This option defines which
Heatmap is displayed by
default.

Valid options are categories,
foreignSources and
monitoredServices.

The following option is used
to filter for categories to be
displayed in the Heatmap.
This option uses the Java
regular

expression syntax. The
default is .* so all categories
will

be displayed.

The following option is used
to filter for foreign sources
to be displayed in the
Heatmap. This option uses
the Java

regular expression syntax.
The defaultis .* so all
foreign

sources will be displayed.

Default

alarms

categories

16

Name Type

org.opennms.heatmap.serviceF String
ilter

org.opennms.heatmap.onlyUnac Boolean
knowledged

org.opennms.web.console.cent String
erUrl

You can use negative lookahead expressions for excluding categories you wish not to be displayed in the

TIP

heatmap, e.g. by using an expression like A(?!XY).* you can filter out entities with names starting with XY.

17

Description Default
The following option is used - *
to filter for services to be
displayed in the Heatmap.

This option uses the Java

regular

expression syntax. The

default is .* so all services

will

be displayed.

This option configures false
whether only

unacknowledged alarms

will be taken into account

when generating the alarm-

based

version of the Heatmap.

You can also place the /surveillance-box.jsp

Heatmap on the landing page
by

setting this option to
/heatmap/heatmap-box. jsp.

Chapter 2. Service Assurance

2.1. Service monitors

2.1.1. AvailabilityMonitor

This monitor tests reachability of a node by using the isReachable method of the InetAddress java class. The service is

considered available if isReachable returns true. See Oracle’s documentation for more details.

IMPORTANT This monitor is deprecated in favour of the IcmpMonitor monitor. You should only use this
monitor on remote pollers running on unusual configurations (See below for more details).

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.AvailabilityMonitor

Remote Enabled true

Configuration and Usage

Table 6. Monitor specific parameters for the AvailabilityMonitor
Parameter Description Required Default value

retry Number of attempts to have optional 3
the isReachable method
return true.

timeout Timeout for the isReachable optional 3000
method, in milliseconds.

Examples

<service name="AVAIL" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="5000"/>

</service>

<monitor service="AVAIL" class-name="org.opennms.netmgt.poller.monitors.AvailabilityMonitor"/>

IcmpMonitor vs AvailabilityMonitor

This monitor has been developped in a time when the IcmpMonitor monitor wasn’t remote enabled, to circumvent this

limitation. Now, with the JNA ICMP implementation, the IcmpMonitor monitor is remote enabled under most

configurations and this monitor shouldn’t be needed -unless you’re running your remote poller on such an unusual

configuration (See also issue NMS-6735 for more information)-.

2.1.2. BgpSessionMonitor

This monitor checks if a BGP-Session to a peering partner (peer-ip) is functional. To monitor the BGP-Session the RFC1269

SNMP MIB is used and test the status of the session using the following OIDs is used:

18

http://docs.oracle.com/javase/7/docs/api/java/net/InetAddress.html#isReachable%28int%29
http://issues.opennms.org/browse/NMS-6735

BGP_PEER_STATE_0ID = .1.3.6.1.2.1.15.3.1.2.<peer-ip>
BGP_PEER_ADMIN_STATE_O0ID = .1.3.6.1.2.1.15.3.1.3.<peer-ip>

BGP_PEER_REMOTEAS_0ID = .1.3.6.1.2.1.15.3.1.9.<peer-1ip>
BGP_PEER_LAST_ERROR_OID = .1.3.6.1.2.1.15.3.1.74.<peer-ip>
BGP_PEER_FSM_EST_TIME OID = .1.3.6.1.2.1.15.3.1.16.<peer-ip>

The <peer-ip> is the far end IP address of the BGP session end point.

A SNMP get request for BGP_PEER_STATE_0ID returns a result between 1 to 6. The servicestates for OpenNMS are mapped as

follows:

Result State description Monitor state in OpenNMS
1 Idle DOWN

2 Connect DOWN

3 Active DOWN

4 OpenSent DOWN

5 OpenConfirm DOWN

6 Established UP

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.BgpSessionMonitor

Remote Enabled false

To define the mapping I used the description from RFC1771 BGP Finite State Machine.

Configuration and Usage

Parameter Description Required Default value
bgpPeerIp IP address of the far end BGP required -
peer session
retry Amount of attempts to get required -
the BGP peer state with
SNMP
timeout Time to wait for the SNMP required -

agents response before
trying a next attempt.

Examples

To monitor the session state Established it is necessary to add a service to your poller configuration in
'$OPENNMS_HOME/etc/poller-configuration.xml', for example:

19

http://www.freesoft.org/CIE/RFC/1771/31.htm

<!-- Example configuration poller-configuration.xml -->
<service name="BGP-Peer-99.99.99.99-AS65423" interval="300000"

user-defined="false" status="on">
<parameter key="retry" value="2" />
<parameter key="timeout" value="3000" />
<parameter key="port" value="161" />
<parameter key="bgpPeerIp" value="99.99.99.99" />

</service>

<monitor service="BGP-Peer-99.99.99.99-AS65423" class-name=
"org.opennms.netmgt.poller.monitors.BgpSessionMonitor" />

Error code mapping

The BGP_PEER _LAST ERROR OID gives an error in HEX-code. To make it human readable a codemapping table is

implemented:

Error code

0100
0101
0102
0103
0200
0201
0202
0203
0204
0205
0206
0300
0301

0302

0303
0304
0305
0306
0307
0308
0309
030A
0308

0400

Error Message

Message Header Error

Message Header Error - Connection Not Synchronized
Message Header Error - Bad Message Length

Message Header Error - Bad Message Type

OPEN Message Error

OPEN Message Error - Unsupported Version Number
OPEN Message Error - Bad Peer AS

OPEN Message Error - Bad BGP Identifier

OPEN Message Error - Unsupported Optional Parameter
OPEN Message Error (deprecated)

OPEN Message Error - Unacceptable Hold Time
UPDATE Message Error

UPDATE Message Error - Malformed Attribute List

UPDATE Message Error - Unrecognized Well-known
Attribute

UPDATE Message Error - Missing Well-known Attribute
UPDATE Message Error - Attribute Flags Error

UPDATE Message Error - Attribute Length Error
UPDATE Message Error - Invalid ORIGIN Attribute
UPDATE Message Error (deprecated)

UPDATE Message Error - Invalid NEXT_HOP Attribute
UPDATE Message Error - Optional Attribute Error
UPDATE Message Error - Invalid Network Field
UPDATE Message Error - Malformed AS_PATH

Hold Timer Expired

20

Error code Error Message

0500 Finite State Machine Error

0600 Cease

0601 Cease - Maximum Number of Prefixes Reached
0602 Cease - Administrative Shutdown

0603 Cease - Peer De-configured

0604 Cease - Administrative Reset

0605 Cease - Connection Rejected

0606 Cease - Other Configuration Change

0607 Cease - Connection Collision Resolution

0608 Cease - Out of Resources

Instead of HEX-Code the error message will be displayed in the service down logmessage. To give some additional

informations the logmessage contains also

BGP-Peer Adminstate
BGP-Peer Remote AS
BGP-Peer established time in seconds

Debugging
If you have problems to detect or monitor the BGP Session you can use the following command to figure out where the
problem come from.

snmpwalk -v 2c¢ -c <myCommunity> <myRouter2Monitor> .1.3.6.71.2.1.15.3.1.2.99.99.99.99

Replace 99.99.99.99 with your BGP-Peer IP. The result should be an Integer between 1 and 6.

2.1.3. BSFMonitor

This monitor runs a Bean Scripting Framework BSF compatible script to determine the status of a service. Users can write
scripts to perform highly custom service checks. This monitor is not optimised for scale. It’s intended for a small number of

custom checks or prototyping of monitors.

BSFMonitor vs SystemExecuteMonitor

The BSFMonitor avoids the overhead of fork(2) that is used by the SystemExecuteMonitor. BSFMonitor also grants access to
a selection of OpenNMS internal methods and classes that can be used in the script.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.BSFMonitor

Remote Enabled false

Configuration and Usage

Table 7. Monitor specific parameters for the BSFMonitor

21

http://commons.apache.org/proper/commons-bsf/

Parameter

file-name

bsf-engine

run-type

lang-class

file-extensions

Description Required
Path to the script file. required

The BSF Engine to run the required
script in different languages
like

Bean Shell:
bsh.util.BeanShellBSFEngine

Groovy:
org.codehaus.groovy.bsf.Groo

vyEngine

Jython:
org.apache.bsf.engines.jytho
n.JythonEngine

one of eval or exec optional

The BSF language class, like optional
groovy or beanshell.

comma-separated list optional

Table 8. Beans which can be used in the script

Variable

map

ip_addr

node_id

node_label

svc_name

bsf_monitor

results

times

Type

Map<String, Object>

String

int

String

String

BSFMonitor

HashMap<String, String>

LinkedHashMap<String, Number>

Default value

eval

file-name extension is
interpreted by default

Description

The map contains all various
parameters passed to the monitor
from the service definition it the
poller-configuration.xml file.

The IP address that is currently being
polled.

The Node ID of the node the ip_addr
belongs to.

The Node Label of the node the ip_addr
and service belongs to.

The name of the service that is being
polled.

The instance of the BSFMonitor object
calling the script.

Useful for logging via its log(String sev,
String fmt, Object... args) method.

The script is expected to put its results
into this object.

The status indication should be set into
the entry with key status.

If the status is not 0K, a key reason
should contain a description of the
problem.

The script is expected to put one or
more response times into this object.

Additionally every parameter added to the service definition in poller-configuration.xml is available as a String object in

the script. The key attribute of the parameter represents the name of the String object and the value attribute represents

the value of the String object.

22

NOTE Please keep in mind, that these parameters are also accessible via the map bean.

CAUTION Avoid non-character names for parameters to avoid problems in the script languages.

Response Codes

The script has to provide a status code that represents the status of the associated service. The following status codes are
defined:

Table 9. Status codes

Code Description

OK Service is available
UNK Service status unknown
UNR Service is unresponsive
NOK Service is unavailable

Response time tracking

By default the BSFMonitor tracks the whole time the script file consumes as the response time. If the response time should

be persisted the response time add the following parameters:
RRD response time tracking for this service in poller-configuration.xml

<!-- where in the filesystem response times are stored -->
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />

<!-- name of the rrd file -->
<parameter key="rrd-base-name" value="minimalbshbase" />

<!-- name of the data source in the rrd file -->
<!-- by default "response-time" is used as ds-name -->
<parameter key="ds-name" value="myResponseTime" />

It is also possible to return one or many response times directly from the script. To add custom response times or override
the default one, add entries to the times object. The entries are keyed with a String that names the datasource and have as
values a number that represents the response time. To override the default response time datasource add an entry into

times named response-time.

Timeout and Retry

The BSFMonitor does not perform any timeout or retry processing on its own. If retry and or timeout behaviour is

required, it has to be implemented in the script itself.

Requirements for the script (run-types)

Depending on the run-type the script has to provide its results in different ways. For minimal scripts with very simple logic

run-type eval is the simple option. Scripts running in eval mode have to return a String matching one of the status codes.

If your script is more than a one-liner, run-type exec is essentially required. Scripts running in exec mode need not return
anything, but they have to add a status entry with a status code to the results object. Additionally, the results object can
also carry a "reason":"message" entry that is used in non 0K states.

23

Commonly used language settings

The BSF supports many languages, the following table provides the required setup for commonly used languages.

Table 10. BSF language setups

Language lang-class bsf-engine required library
BeanShell beanshell bsh.util.BeanShellBSFEngine supported by default
Groovy groovy Sggag?gghaus-QFOOVY-be-GFOO groovy-all-[version].jar
Jython jython org.apache.bsf.engines.jytho jython-[version].jar

n.JythonEngine

Example Bean Shell

BeanShell example poller-configuration.xml

<service name="MinimalBeanShell" interval="300000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/MinimalBeanShell.bsh"/>
<parameter key="bsf-engine" value="bsh.util.BeanShellBSFEngine"/>

</service>

<monitor service="MinimalBeanShell" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

BeanShell example MinimalBeanShell.bsh script file

bsf_monitor.log("ERROR", "Starting MinimalBeanShell.bsf", null);
File testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
return "OK";
} else {
results.put("reason", "file does not exist");
return "NOK";
3

Example Groovy

To use the Groovy language an additional library is required. Copy a compatible groovy-all.jar into to opennms/1ib folder

and restart OpenNMS. That makes Groovy available for the BSFMonitor.

Groovy example poller-configuration.xml with default run-type set to eval

<service name="MinimalGroovy" interval="300000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
<parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>
</service>

<monitor service="MinimalGroovy" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

24

http://www.beanshell.org
http://groovy.codehaus.org
http://www.jython.org

Groovy example MinimalGroovy.groovy script file for run-type eval

bsf_monitor.log("ERROR", "Starting MinimalGroovy.groovy", null);
File testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
return "0K";
} else {
results.put("reason", "file does not exist");
return "NOK";
3

Groovy example poller-configuration.xml with run-type set to exec

<service name="MinimalGroovy" interval="300000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
<parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>
<parameter key="run-type" value="exec"/>

</service>

<monitor service="MinimalGroovy" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

Groovy example MinimalGroovy.groovy script file for run-type set to exec

bsf_monitor.log("ERROR", "Starting MinimalGroovy", null);
def testFile = new File("/tmp/TestFile");
if (testFile.exists()) {
results.put("status", "OK")
} else {
results.put("reason", "file does not exist");
results.put(“status", "NOK");
}

Example Jython

To use the Jython (Java implementation of Python) language an additional library is required. Copy a compatible jython-
x.y.z.jar into the opennms/1ib folder and restart OpenNMS. That makes Jython available for the BSFMonitor.

Jython example poller-configuration.xml with run-type exec

<service name="Minimallython" interval="300000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/Minimallython.py"/>
<parameter key="bsf-engine" value="org.apache.bsf.engines.jython.JythonEngine"/>
<parameter key="run-type" value="exec"/>

</service>

<monitor service="Minimallython" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

Jython example MinimalJython.py script file for run-type set to exec
from java.io import File

bsf_monitor.log("ERROR", "Starting Minimallython.py", None);
if (File("/tmp/TestFile").exists()):
results.put("status", "0K")
else:
results.put("reason”, "file does not exist")
results.put("status", "NOK")

25

NOTE We have to use run-type exec here because Jython chokes on the import keyword in eval mode.

NOTE As profit that this is really Python, notice the substitution of Python’s None value for Java’s null in the log
call.

Advanced examples

The following example references all beans that are exposed to the script, including a custom parameter.
Groovy example poller-configuration.xml

<service name="MinimalGroovy" interval="30000" user-defined="true" status="on">
<parameter key="file-name" value="/tmp/MinimalGroovy.groovy"/>
<parameter key="bsf-engine" value="org.codehaus.groovy.bsf.GroovyEngine"/>

<!-- custom parameters (passed to the script) -->
<parameter key="myParameter" value="Hello Groovy" />

<!-- optional for response time tracking -->
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
<parameter key="rrd-base-name" value="minimalgroovybase" />
<parameter key="ds-name" value="minimalgroovyds" />
</service>

<monitor service="MinimalGroovy" class-name="org.opennms.netmgt.poller.monitors.BSFMonitor" />

26

Groovy example Bean referencing script file

bsf_monitor.log("ERROR", "Starting MinimalGroovy", null);

//1list of all available objects from the BSFMonitor
Map<String, Object> map = map;
bsf_monitor.log("ERROR", "---- map ----", null);
bsf_monitor.log("ERROR", map.toString(), null);

String ip_addr = ip_addr;
bsf_monitor.log("ERROR", "---- ip_addr ----", null);
bsf_monitor.log("ERROR", ip_addr, null);

int node_id = node_id;
bsf_monitor.log("ERROR", "---- node_id ----", null);
bsf_monitor.log("ERROR", node_id.toString(), null);

String node_label = node_label;
bsf_monitor.log("ERROR", "---- node_label ----", null);
bsf_monitor.log("ERROR", node_label, null);

String svc_name = svc_name;
bsf_monitor.log("ERROR", "---- svc_name ----", null);
bsf_monitor.log("ERROR", svc_name, null);

org.opennms.netmgt.poller.monitors.BSFMonitor bsf_monitor = bsf_monitor;
bsf_monitor.log("ERROR", "---- bsf_monitor ----", null);
bsf_monitor.log("ERROR", bsf_monitor.toString(), null);

HashMap<String, String> results = results;
bsf_monitor.log("ERROR", "---- results ----", null);
bsf_monitor.log("ERROR", results.toString(), null);

LinkedHashMap<String, Number> times = times;
bsf_monitor.log("ERROR", "---- times ----", null);
bsf_monitor.log("ERROR", times.toString(), null);

// reading a parameter from the service definition
String myParameter = myParameter;
bsf_monitor.log("ERROR", "---- myParameter ----", null);
bsf_monitor.log("ERROR", myParameter, null);

// minimal example

def testFile = new File("/tmp/TestFile");

if (testFile.exists()) {
bsf_monitor.log("ERROR", "Done MinimalGroovy ---- OK ----", null);
return "0K";

} else {

results.put(“reason", "file does not exist");
bsf_monitor.log("ERROR", "Done MinimalGroovy ---- NOK ----", null);

return "NOK";
}

2.1.4. CiscolIpSlaMonitor

This monitor can be used to monitor IP SLA configurations on your Cisco devices. This monitor supports the following
SNMP OIDS from CISCO-RTT-MON-MIB:

27

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en&translate=Translate&objectInput=1.3.6.1.4.1.9.9.42

RTT_ADMIN_TAG_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.3

RTT_OPER_STATE_0ID = .1.3.6.1.4.1.9.9.42.1.2.9.1.10
RTT_LATEST_OPERSENSE_OID = .1.3.6.1.4.1.9.9.42.1.2.10.1.2
RTT_ADMIN_THRESH_OID = .1.3.6.1.4.1.9.9.42.1.2.1.1.5
RTT_ADMIN_TYPE_O0ID = .1.3.6.1.4.1.9.9.42.1.2.1.1.4
RTT_LATEST_OID = .1.3.6.1.4.1.9.9.42.1.2.10.1.1

The monitor can be run in two scenarios. The first one tests the RTT LATEST OPERSENSE which is a sense code for the
completion status of the latest RTT operation. If the RTT_LATEST OPERSENSE returns ok(1) the service is marked as up.

The second scenario is to monitor the configured threshold in the IP SLA config. If the RTT_LATEST OPERSENSE returns

with overThreshold(3) the service is marked down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor

Remote Enabled false

Configuration and Usage

Table 11. Monitor-specific parameters for the CiscolpSlaMonitor
Parameter Description Required Default value

retry Number of retries to get the optional from snmp-config.xml
information from the SNMP
agent before the service is
marked as
down.

timeout Time in milliseconds to wait optional from snmp-config.xml
for the result from the SNMP
agent before making the next
attempt.

admin-tag The tag attribute from your required -
IP SLA configuration you
want to monitor.

ignore-thresh Boolean indicates if just the required
status or configured
threshold should be
monitored.

Example for HTTP and ICMP echo reply

In this example we configure an IP SLA entry to monitor Google’s website with HTTP GET from the Cisco device. We use
8.8.8.8 as our DNS resolver. In our example our SLA says we should reach Google’s website within 200ms. To advise co-
workers that this monitor entry is used for monitoring, I set the owner to OpenNMS. The tag is used to identify the entry

later in the SNMP table for monitoring.

28

Cisco device configuration for IP SLA instance for HTTP GET

ip sla monitor 1

type http operation get url http://www.google.de name-server 8.8.8.8
timeout 3000

threshold 200

owner OpenNMS

tag Google Website

ip sla monitor schedule 3 life forever start-time now

In the second example we configure a IP SLA to test if the IP address from www.opennms.org is reachable with ICMP from

the perspective of the Cisco device. Like the example above we have a threshold and a timeout.
Cisco device configuration for IP SLA instance for ICMP monitoring.

ip sla 1

icmp-echo 64.146.64.212

timeout 3000

threshold 150

owner OpenNMS

tag OpenNMS Host

ip sla schedule 1 life forever start-time now

It s not possible to reconfigure an IP SLA entry. If you want to change parameters, you have to
WARNING delete the whole configuration and reconfigure it with your new parameters. Backup your Cisco

configuration manually or take a look at RANCID.

To monitor both of the entries the configuration in poller-configuration.xml requires two service definition entries:

<service name="IP-SLA-WEB-Google" interval="300000"
user-defined="false" status="on">
<parameter key="retry" value="2" />
<parameter key="timeout" value="3000" />
<parameter key="admin-tag" value="Google Website" />
<parameter key="ignore-thresh" value="false" /><1>
</service>
<service name="IP-SLA-PING-OpenNMS" interval="300000"
user-defined="false" status="on">
<parameter key="retry" value="2" />
<parameter key="timeout" value="3000" />
<parameter key="admin-tag" value="OpenNMS Host" />
<parameter key="ignore-thresh" value="true" /><2>
</service>

<monitor service="IP-SLA-WEB-Google" class-name="org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor" />

<monitor service="IP-SLA-PING-OpenNMS" class-name="org.opennms.netmgt.poller.monitors.CiscoIpSlaMonitor"
/>

@ Service is up if the IP SLA state is ok(1)
@ Service is down if the IP SLA state is overThreshold(3)
2.1.5. CiscoPingMibMonitor

This poller monitor’s purpose is to create conceptual rows (entries) in the ciscoPingTable on Cisco IOS devices that support
the CISCO-PING-MIB. These entries direct the remote I0S device to ping an IPv4 or IPv6 address with a configurable set of

parameters. After the IOS device has completed the requested ping operations, the poller monitor queries the IOS device to

29

http://www.shrubbery.net/rancid/
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&mibName=CISCO-PING-MIB

determine the results. If the results indicate success according to the configured parameters in the service configuration,
then the monitored service is reported as available and the results are available for optional time-series (RRD) storage. If
the results indicate failure, the monitored service is reported unavailable with a descriptive reason code. If something goes
wrong during the setup of the entry or the subsequent querying of its status, the monitored service is reported to be in an

unknown state.

Unlike most poller monitors, the CiscoPingMibMonitor does not interpret the timeout and retries
NOTE parameters to determine when a poll attempt has timed out or whether it should be attempted again. The
packet-count and packet-timeout parameters instead service this purpose from the perspective of the

remote IOS device.

Supported MIB OIDs from CISCO_PING_MIB

ciscoPingEntry 1.3.6.1.4.1.9.9.16.1.1.1
ciscoPingSerialNumber 1.3.6.1.4.1.9.9.16.1.1.1.1
ciscoPingProtocol 1.3.6.1.4.1.9.9.16.1.1.1.2
ciscoPingAddress 1.3.6.1.4.1.9.9.16.1.1.1.3
ciscoPingPacketCount 1.3.6.1.4.1.9.9.16.1.1.1.4
ciscoPingPacketSize 1.3.6.1.4.1.9.9.16.1.1.1.5
ciscoPingPacketTimeout 1.3.6.1.4.1.9.9.16.1.1.1.6
ciscoPingDelay 1.3.6.1.4.1.9.9.16.1.1.1.7
ciscoPingTrapOnCompletion 1.3.6.1.4.1.9.9.16.1.1.1.8
ciscoPingSentPackets 1.3.6.1.4.1.9.9.16.1.1.1.9
ciscoPingReceivedPackets 1.3.6.1.4.1.9.9.16.1.1.1.10
ciscoPingMinRtt 1.3.6.1.4.1.9.9.16.1.1.1.11
ciscoPingAvgRtt 1.3.6.1.4.1.9.9.16.1.1.1.12
ciscoPingMaxRtt 1.3.6.1.4.1.9.9.16.1.1.1.13
ciscoPingCompleted 1.3.6.1.4.1.9.9.16.1.1.1.14
ciscoPingEntryOwner 1.3.6.1.4.1.9.9.16.1.1.1.15
ciscoPingEntryStatus 1.3.6.1.4.1.9.9.16.1.1.1.16
ciscoPingVrfName 1.3.6.1.4.1.9.9.16.1.1.1.17
Prerequisites

* One or more Cisco devices running an IOS image of recent vintage; any 12.2 or later image is probably fine. Even very

low-end devices appear to support the CISCO-PING-MIB.

* The IOS devices that will perform the remote pings must be configured with an SNMP write community string whose
source address access-list includes the address of the OpenNMS server and whose MIB view (if any) includes the OID of

the ciscoPingTable.

* The corresponding SNMP write community string must be specified in the write-community attribute of either the top-
level <snmp-config> element of snmp-config.xml or a <definition> child element that applies to the SNMP-primary

interface of the IOS device(s) that will perform the remote pings.

Scalability concerns

This monitor spends a fair amount of time sleeping while it waits for the remote IOS device to complete the requested ping
operations. The monitor is pessimistic in calculating the delay between creation of the ciscoPingTable entry and its first
attempt to retrieve the results of that entry’s ping operations — it will always wait at least (packet-count * (packet-timeout
+ packet-delay)) milliseconds before even checking whether the remote pings have completed. It’s therefore prone to
hogging poller threads if used with large values for the packet-count, packet-timeout, and/or packet-delay parameters. Keep

these values as small as practical to avoid tying up poller threads unnecessarily.

This monitor always uses the current time in whole seconds since the UNIX epoch as the instance identifier of the

30

ciscoPingTable entries that it creates. The object that holds this identifier is a signed 32-bit integer type, precluding a finer

resolution. It’s probably a good idea to mix in the least-significant byte of the millisecond-accurate time as a substitute for

that of the whole-second-accurate value to avoid collisions. IOS seems to clean up entries in this table within a manner of

minutes after their ping operations have completed.

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor

false

Table 12. Monitor specific parameters for the CiscoPingMibMonitor

Parameter

timeout

retry

version

packet-count

packet-size

packet-timeout

packet-delay

entry-owner

vrf-name

31

Description

A timeout, in milliseconds,
that should override the
SNMP timeout specified in
snmp-config.xml. Do not use
without a very good reason
to do so.

Number of retries to attempt
if the initial attempt times
out. Overrides the
equivalent value from snmp-
config.xml. Do not use unless
really needed.

SNMP protocol version (1, 2c,
or 3) to use for operations
performed by this service
monitor. Do not use with out
a very good reason to do so.

Number of ping packets that
the remote IOS device should
send.

Size, in bytes, of each ping
packet that the remote I0S
device should send.

Timeout, in milliseconds, of
each ping packet sent by the
remote IOS device.

Delay, in milliseconds,
between ping packets sent by
the remote I0OS device.

String value to set as the
value of
ciscoPingEntryOwner of
entries created for this
service.

String value to set as the VRF
(VLAN) name in whose
context the remote I0S
device

should perform the pings for
this service.

Required

optional

optional

optional

optional

optional

optional

optional

optional

optional

Default value

from snmp-config.xml

from snmp-config.xml

from snmp-config.xml

100

2000

OpenNMS CiscoPingMibMonitor

empty String

Parameter

proxy-node-id

proxy-node-foreign-source

proxy-node-foreign-id

proxy-ip-addr

target-ip-addr

success-percent

Description Required

Numeric database identifier optional
of the node whose primary
SNMP interface should be
used

as the proxy for this service.
If specified along with the
related
proxy-node-foreign-source,
proxy-node-foreign-id,
and/or proxy-ip-addr, this
parameter will be the
effective one.

foreign-source name and optional
foreign-ID of the node whose

primary SNMP interface

should be used as the "proxy"

for this service. These two

parameters are corequisites.

If they appear along with the

related proxy-ip-addr, these
parameters will be the

effective ones.

IP address of the interface optional
that should be used as the
proxy for this service.
Effective only if none of
proxy-node-id, proxy-node-
foreign-source, nor
proxy-node-foreign-id
appears alongside this
parameter. A value of
${ipaddr} will

be substituted with the IP
address of the interface on
which the monitored service
appears.

IP address that the remote optional
I0S device should ping. A

value of ${ipaddr} will be

substituted with the IP

address of the interface on

which the monitored service

appears.

A whole-number percentage optional
of pings that must succeed
(from the perspective of the
remote IOS device) in order
for this service to be
considered available. As an
example, if packet-count is
left at its default value of 5
but you wish the

service to be considered
available even if only one of
those five pings is successful,
then set this parameter’s
value to 20.

Default value

100

32

Parameter Description Required Default value

rrd-repository Base directory of an RRD optional -
repository in which to store
this service monitor’s
response-time samples

ds-name Name of the RRD datasource optional -
(DS) name in which to store
this service monitor’s
response-time samples; rrd-
base-name Base name of the
RRD file (minus the .rrd or
.jrb file extension) within
the specified rrd-repository
path in which this service
monitor’s response-time
samples will be persisted

This is optional just if you can use variables in the configuration

Table 13. Variables which can be used in the configuration

Variable Description

${ipaddr} This value will be substituted with the IP address of the
interface on which the monitored service
appears.

Example: Ping the same non-routable address from all routers of customer Foo

A service provider’s client, Foo Corporation, has network service at multiple locations. At each Foo location, a point-of-sale
system is statically configured at IPv4 address 192.168.255.1. Foo wants to be notified any time a point-of-sale system
becomes unreachable. Using an OpenNMS remote location monitor is not feasible. All of Foo Corporation’s CPE routers

must be Cisco IOS devices in order to achieve full coverage in this scenario.

One approach to this requirement is to configure all of Foo Corporation’s premise routers to be in the surveillance
categories Customer_Foo, CPE, and Routers, and to use a filter to create a poller package that applies only to those routers.
We will use the special value ${ipaddr} for the proxy-ip-addr parameter so that the remote pings will be provisioned on
each Foo CPE router. Since we want each Foo CPE router to ping the same IP address 192.168.255.1, we statically list that
value for the target-ip-addr address.

33

<package name="ciscoping-foo-pos">
<filter>catincCustomer_Foo & catincCPE & catincRouters & nodeSysOID LIKE '.1.3.6.1.4.1.9.%'</filter>
<include-range begin="0.0.0.0" end="254.254.254.254" />
<rrd step="300">
<rra>RRA:AVERAGE:0.5:1:2016</rra>
<rra>RRA:AVERAGE:0.5:12:1488</rra>
<rra>RRA:AVERAGE:0.5:288:366</rra>
<rra>RRA:MAX:0.5:288:366</rra>
<rra>RRA:MIN:@.5:288:366</rra>
</rrd>
<service name="FooP0S" interval="300000" user-defined="false" status="on">
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
<parameter key="rrd-base-name" value="ciscoping" />
<parameter key="ds-name" value="ciscoping" />
<parameter key="proxy-ip-addr" value="${ipaddr}" />
<parameter key="target-ip-addr" value="192.168.255.1" />
</service>
<downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->
<downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->
<downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->
<downtime begin="432000000" delete="true" /><!-- anything after 5 days delete -->
</package>

<monitor service="FooP0S" class-name="org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor" />

Example: Ping from a single I0S device routable address of each router of customer Bar

A service provider’s client, Bar Limited, has network service at multiple locations. While OpenNMS' world-class service
assurance is generally sufficient, Bar also wants to be notified any time a premise router at one of their locations
unreachable from the perspective of an IOS device in Bar’s main data center. Some or all of the Bar Limited CPE routers

may be non-Cisco devices in this scenario.

To meet this requirement, our approach is to configure Bar Limited’s premise routers to be in the surveillance categories
Customer_Bar, CPE, and Routers, and to use a filter to create a poller package that applies only to those routers. This time,
though, we will use the special value §{ipaddr} not in the proxy-ip-addr parameter but in the target-ip-addr parameter so
that the remote pings will be performed for each Bar CPE router. Since we want the same IOS device 20.11.5.11 to ping the

CPE routers, we statically list that value for the proxy-ip-addr address. Example poller-configuration.xml additions

34

<package name="ciscoping-bar-cpe">
<filter>catincCustomer_Bar & catincCPE & catincRouters</filter>
<include-range begin="0.0.0.0" end="254.254.254.254" />
<rrd step="300">
<rra>RRA:AVERAGE:0.5:1:2016</rra>
<rra>RRA:AVERAGE:0.5:12:1488</rra>
<rra>RRA:AVERAGE:0.5:288:366</rra>
<rra>RRA:MAX:0.5:288:366</rra>
<rra>RRA:MIN:@.5:288:366</rra>
</rrd>
<service name="BarCentral" interval="300000" user-defined="false" status="on">
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
<parameter key="rrd-base-name" value="ciscoping" />
<parameter key="ds-name" value="ciscoping" />
<parameter key="proxy-ip-addr" value="20.11.5.11" />
<parameter key="target-ip-addr" value="${ipaddr}" />
</service>
<downtime interval="30000" begin="0" end="300000" /><!-- 30s, 0, 5m -->
<downtime interval="300000" begin="300000" end="43200000" /><!-- 5m, 5m, 12h -->
<downtime interval="600000" begin="43200000" end="432000000" /><!-- 10m, 12h, 5d -->
<downtime begin="432000000" delete="true" /><!-- anything after 5 days delete -->
</package>

<monitor service="BarCentral" class-name="org.opennms.netmgt.poller.monitors.CiscoPingMibMonitor" />

2.1.6. CitrixMonitor

This monitor is used to test if a Citrix® Server or XenApp Server® is providing the Independent Computing Architecture
(ICA) protocol on TCP 1494. The monitor opens a TCP socket and tests the greeting banner returns with ICA, otherwise the

service is unavailable.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.CitrixMonitor

Remote Enabled true

Configuration and Usage

Table 14. Monitor specific parameters for the CitrixMonitor
Parameter Description Required Default value

retry Amount of attempts opening optional 0
a connection and try to get
the greeting banner before
the service goes down

timeout Time to wait retrieving the optional 3000 ms
greeting banner ICA from
TCP connection before trying
a next attempt.

port TCP port where the ICA optional 1494
protocol is listening.

If you have configure the Metaframe Presentation Server Client using Session Reliability, the TCP port

WARNING is 2598 instead of 1494. You can find additional information on CTX104147. It is not verified if the

monitor works in this case.

35

http://support.citrix.com/article/CTX104147

Examples

The following example configures OpenNMS to monitor the ICA protocol on TCP 1494 with 2 retries and waiting 5 seconds

for each retry.

<service name="Citrix-TCP-ICA" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2" />
<parameter key="timeout" value="5000" />

</service>

<monitor service="Citrix-TCP-ICA" class-name="org.opennms.netmgt.poller.monitors.CitrixMonitor" />

2.1.7. DhcpMonitor

This monitor is used to monitor the availability and functionality of DHCP servers. This monitor has two parts, the first one
is the monitor class DhcpMonitor executed by Pollerd and the second part is a background daemon Dhcpd running inside
the OpenNMS JVM and listening for DHCP responses. A DHCP server is tested by sending a DISCOVER message. If the DHCP
server responds with an OFFER the service is marked as up. The Dhcpd background daemon is disabled by default and has
to be activated in service-configuration.xml in OpenNMS by setting service enabled="true". The behavior for testing the

DHCP server can be modified in the dhcp-configuration.xml configuration file.
IMPORTANT It is required to install the opennms-plugin-protocol-dhcp before you can use this feature.

Installing the opennms-plugin-protocol-dhcp package

{apt-get,yum} install opennms-plugin-protocol-dhcp

If you try to start OpenNMS without the opennms-plugin-protocol-dhcp you will see the following error message in

output.log:

An error occurred while attempting to start the "OpenNMS:Name=Dhcpd" service (class
org.opennms.netmgt.dhepd. jmx.Dhepd). Shutting down and exiting.
java.lang.(ClassNotFoundException: org.opennms.netmgt.dhcpd.jmx.Dhcpd

Make sure no DHCP client is running on the OpenNMS server and using port UDP/68. If UDP/68 is
CAUTION already in use, you will find an error message in the manager.log. You can test if a process is

listening on udp/68 with sudo ss -1lnpu sport = :68.

Monitor facts

Class Name org.opennms.protocols.dhcp.monitor.DhcpMonitor

Remote Enabled false

Table 15. Service monitor parameters configured in poller-configuration.xml
Parameter Description Required Default value

retry Number of retries before the optional 0
service is marked as down

timeout Time in milliseconds to wait optional 3000
for the DHCP response from
the server

36

http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

Parameter

rrd-repository

rrd-base-name

ds-name

Dhcpd configuration

Description Required

The location to write RRD optional
data. Generally, you will not

want to change this from

default

The name of the RRD file to optional
write (minus the extension,
.rrd or .jrb)

This is the name as reference optional
for this particular data
source in the RRD file

Table 16. Dhcpd parameters in dhep-configuration.xml.

Parameter

port

macAddress

myIpAddress

37

Description Required

Defines the port your dhcp required
server is using

The MAC address which required
OpenNMS uses for a dhcp
request

This parameter will usually required
be set to the IP address of the
OpenNMS server,

which puts the DHCP poller
in relay mode as opposed to
broadcast mode.

In relay mode, the DHCP
server being polled will
unicast its responses directly
back to the IP address
specified by myIpAddress
rather than broadcasting its
responses. This allows DHCP
servers to be polled even
though they are not on the
same subnet as the OpenNMS
server, and without the aid
of an external relay.

Usage:

myIpAddress="10.11.12.13" or
myIpAddress="broadcast"

Default value

$OPENNMS_HOME/share/rrd/resp
onse

dhep

dhep

Default value

5818

00:06:0D:BE:9C:B2

broadcast

extendedMode When extendedMode is false, required false
the DHCP poller will send a
DISCOVER and expect an
OFFER in return. When
extendedMode is true, the
DHCP poller will first send a
DISCOVER. If no valid
response is received it will
send an INFORM. If no valid
response is received it will
then send a REQUEST.
OFFER, ACK, and NAK are all
considered valid responses
in extendedMode.
Usage: extendedMode="true"
or extendedMode="false"

requestIpAddress This parameter only applies required false
to REQUEST queries sent to
the DHCP server when
extendedMode is true. If an
IP address is specified, that
IP address will be
requested in the query. If
targetHost is specified, the
DHCP server’s own IP
address will be requested.
Since a well-managed server
will probably not respond
to a request for its own IP,
this parameter can also be
set to targetSubnet.
This is similar to targetHost
except the DHCP server’s IP
address is
incremented or decremented
by 1 to obtain an ip address
that is on the same
subnet.
(The resulting address will
not be on the same subnet if
the DHCP server’s
subnet is a /32 or /31.
Otherwise, the algorithm
used should be reliable.)
Usage:
requestIpAddress="10.77.88.9
9" or
requestIpAddress="targetHost

or
requestIpAddress="targetSubn
etll

OpenNMS

Broadcast
255.255.255.255

—— Offer (broadcast mode)

172.23.42.128

Discover >
) Service Up

Figure 10. Visualization of DHCP message flow in broadcast mode

OpenNMSs
172.23.42.128

(L— Discover————»

Service Up o Ea e
extended—false -« Offer (relay mode)
If no Offer responds

DHCP Discover———»

Service Down DHCP Discover——»

extended=false | ——— DHCP Inform———»

DHCP inform——»

DHCP Inform——»

Request———— @

Reguest————

Service Down Request————»

extended=true ?

Figure 11. Visualization of DHCP message flow in relay mode

Example testing DHCP server in the same subnet

Example configuration how to configure the monitor in the poller-configuration.xml. The monitor will try to send in
maximum 3 DISCOVER messages and waits 3 seconds for the DHCP server OFFER message.

Step 1: Configure a DHCP service in poller-configuration.xml

<service name="DHCP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2" />

<parameter key="timeout" value="3000" />

<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />
<parameter key="rrd-base-name" value="dhcp" />

<parameter key="ds-name" value="dhcp" />

</service>

<monitor service="DHCP" class-name="org.opennms.protocols.dhcp.monitor.DhcpMonitor"/>

Step 2: Enable the OpenNMS Dhcpd daemon in service-configuration.xml

<service enabled="true">
<name>0penNMS :Name=Dhcpd</name>
<class-name>org.opennms.netmgt.dhcpd. jmx.Dhcpd</class-name>
<invoke method="start" pass="1" at="start"/>
<invoke method="status" pass="0" at="status"/>
<invoke method="stop" pass="0" at="stop"/>

</service>

Step 3: Configure Dhcpd to test a DHCP server in the same subnet as the OpenNMS server.

<DhcpdConfiguration
port="5818"
macAddress="00:06:0D:BE:9C:B2"
myIpAddress="broadcast
extendedMode="false"
requestIpAddress="127.0.0.1">
</DhcpdConfiguration>

39

Example testing DHCP server in a different subnet in extended mode

You can use the same monitor in poller-configuration.xml as in the example above.
Configure Dhcpd to test DHCP server in a different subnet. The OFFER from the DHCP server is sent to myIpAddress.

<DhcpdConfiguration
port="5818"
macAddress="00:06:0D:BE:9C:B2"
myIpAddress="10.4.1.234"
extendedMode="true"
requestIpAddress="targetSubnet">
</DhcpdConfiguration>

NOTE If in extendedMode, the time required to complete the poll for an unresponsive node is increased by a
factor of 3. Thus it is a good idea to limit the number of retries to a small number.

2.1.8. DiskUsageMonitor

The DiskUsageMonitor monitor can be used to test the amount of free space available on certain storages of a node.

The monitor gets information about the available free storage spaces available by inspecting the hrStorageTable of the
HOST-RESOURCES-MIB.

A storage’s description (as found in the corresponding hrStorageDescr object) must match the criteria specified by the disk

and match-type parameters to be monitored.
A storage’s available free space is calculated using the corresponding hrStorageSize and hrStorageUsed objects.

The hrStorageUsed doesn’t account for filesystem reserved blocks (i.e. for the super-user), so
CAUTION DiskUsageMonitor will report the service as unavailable only when the amount of free disk

space is actually lower than free minus the percentage of reserved filesystem blocks.

This monitor uses SNMP to accomplish its work. Therefore systems against which it is to be used must have an SNMP agent
supporting the HOST-RESOURCES-MIB installed and configured. Most modern SNMP agents, including most distributions of
the Net-SNMP agent and the SNMP service that ships with Microsoft Windows, support this MIB. Out-of-box support for
HOST-RESOURCES-MIB among commercial Unix operating systems may be somewhat spotty.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DiskUsageMonitor

Remote Enabled false, relies on SNMP configuration.

Configuration and Usage

Table 17. Monitor specific parameters for the DiskUsageMonitor
Parameter Description Required Default value

disk A pattern that a storage’s required -
description (hrStorageDescr)
must match to be taken into
account.

40

http://tools.ietf.org/html/rfc1514

Parameter

free

match-type

port

retries

retry

timeout

Examples

41

Description Required

The minimum amount of optional
free space that storages

matching the criteria must

have available.

This parameter is evaluated

as a percent of the storage’s

reported maximum capacity.

The way how the pattern optional
specified by the disk

parameter must be

compared to storages

description

Must be one of the following

symbolic operators:

endswith : The disk
parameter’s value is
evaluated as a string that
storages' description
must end with;

exact :Thedisk
parameter’s value is
evaluated as a string that
storages" description
must exactly match;

regex :Thedisk
parameter’s value is
evaluated as a regular
expression that storages'
description must match;

startswith : The disk
parameter’s value is
evaluated as a string that
storages' description
must start with.

Note: Comparisons are case-
sensitive

Destination port where the optional
SNMP requests shall be sent.

Deprecated. optional
Same as retry.

Parameter retry takes

precedence when both are

set.

Number of polls to attempt. optional

Timeout in milliseconds for optional
retrieving the values.

Default value

15

exact

from snmp-config.

from snmp-config.

from snmp-config.

from snmp-config.

xml

xml

xml

xml

<!-- Make sure there's at least 5% of free space available on storages ending with "/home" -->
<service name="DiskUsage-home" interval="300000" user-defined="false" status="on">
<parameter key="timeout" value="3000" />
<parameter key="retry" value="2" />
<parameter key="disk" value="/home" />
<parameter key="match-type" value="endsWith" />
<parameter key="free" value="5" />
</service>
<monitor service="DiskUsage-home" class-name="org.opennms.netmgt.poller.monitors.DiskUsageMonitor" />

DiskUsageMonitor vs thresholds

Storages' available free space can also be monitored using thresholds if you are already collecting these data.

2.1.9. DnsMonitor

This monitor is build to test the availability of the DNS service on remote IP interfaces. The monitor tests the service

availability by sending a DNS query for A resource record types against the DNS server to test.

The monitor is marked as up if the DNS Server is able to send a valid response to the monitor. For multiple records it is

possible to test if the number of responses are within a given boundary.

The monitor can be simulated with the command line tool host:

~ % host -v -t a www.google.com 8.8.8.8
Trying "www.google.com"

Using domain server:

Name: 8.8.8.8

Address: 8.8.8.8#53

Aliases:

;7 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9324
;5 flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: @, ADDITIONAL: @

;7 QUESTION SECTION:
;www.google.com.INA

;» ANSWER SECTION:

www.google.com.283INA74.125.232.17
www.google.com.283INA74.125.232.20
www.google.com.283INA74.125.232.19
www.google.com.283INA74.125.232.16
www.google.com.283INA74.125.232.18

Received 112 bytes from 8.8.8.8#53 in 41 ms

TIP: This monitor is intended for testing the availability of a DNS service. If you want to monitor the DNS resolution of

some of your nodes from a client’s perspective, please use the DNSResolutionMonitor.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DnsMonitor

Remote Enabled true

42

Configuration and Usage

Table 18. Monitor specific parameters for the DnsMonitor
Parameter Description Required Default value

retry Number of retries before the optional 0
service is marked as down

timeout Time in milliseconds to wait optional 5000
for the A Record response
from the server

port UDP Port for the DNS server optional 53
Lookup DNS A Record for lookup test optional localhost
fatal-response-codes A comma-separated list of ~ optional 2

numeric DNS response codes
that will be considered fatal
if

present in the server’s
response. Default value is 2
corresponds to Server Failed.
A

list of codes and their
meanings is found in RFC
2929

min-answers Minmal number of records optional -
in the DNS server respone
for the given lookup

max-answers Maximal number of records optional -
in the DNS server respone
for the given lookup

Examples

The given examples shows how to monitor if the IP interface from a given DNS server resolves a DNS request. This service
should be bound to a DNS server which should be able to give a valid DNS respone for DNS request www.google.com. The

service is up if the DNS server gives between 1 and 10 A record responses.

Example configuration monitoring DNS request for a given server for www.google.com

<service name="DNS-www.google.com" interval="300000" user-defined="false" status="on">
<parameter key="lookup" value="www.google.com" />
<parameter key="fatal-response-code" value="2" />
<parameter key="min-answers" value="1" />
<parameter key="max-answers" value="10" />
</service>

<monitor service="DNS-www.google.com" class-name="org.opennms.netmgt.poller.monitors.DnsMonitor" />

2.1.10. DNSResolutionMonitor

The DNS resolution monitor, tests if the node label of an OpenNMS node can be resolved. This monitor uses the name
resolver configuration from the poller configuration or from the operating system where OpenNMS is running on. It can be
used to test a client behavior for a given host name. For example: Create a node with the node label www.google.com and
an IP interface. Assigning the DNS resolution monitor on the IP interface will test if www.google.com can be resolved using

the DNS configuration defined by the poller. The response from the A record lookup can be any address, it is not verified

43

http://tools.ietf.org/html/rfc2929
http://tools.ietf.org/html/rfc2929

with the IP address on the OpenNMS IP interface where the monitor is assigned to.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.DNSResolutionMonitor

Remote Enabled true

Configuration and Usage

Table 19. Monitor specific parameters for the DNSResolutionMonitor

Parameter Description Required Default value
resolution-type Type of record for the node optional either

label test.

Allowed values

v4 for A records,
vb for AAAA record,

both A and AAAA record
must be available,

either A or AAAA record
must be available.

nameserver The DNS server to query for optional Use the servers defined by
the records. the system running
OpenNMS
retry Amount of attempts to required -

resolve the node label before
the service goes down

timeout Time to wait for a A and/or required -
AAAA record from the
system configured DNS
server before trying a next
attempt.
Examples

The following example shows the possibilities monitoring IPv4 and/or IPv6 for the service configuration:

<!-- Assigned service test if the node label is resolved for an A record -->

<service name="DNS-Resolution-v4" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="resolution-type" value="v4"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="dns-res-v4"/>
<parameter key="ds-name" value="dns-res-v4"/>

</service>

<!-- Assigned service test if the node label is resolved for an AAAA record using a specific DNS server
-->
<service name="DNS-Resolution-v6" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="resolution-type" value="v6"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="dns-res-v6"/>
<parameter key="ds-name" value="dns-res-v6"/>
<parameter key="nameserver" value="8.8.8.8"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record AND A record -->
<service name="DNS-Resolution-v4-and-v6" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="resolution-type" value="both"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="dns-res-both"/>
<parameter key="ds-name" value="dns-res-both"/>
</service>

<!-- Assigned service test if the node label is resolved for an AAAA record OR A record -->
<service name="DNS-Resolution-v4-or-v6" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="resolution-type" value="either"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="dns-res-either"/>
<parameter key="ds-name" value="dns-res-either"/>
</service>

<monitor service="DNS-Resolution-v4" class-name="org.opennms.netmgt.poller.monitors.DNSResolutionMonitor"
/>

<monitor service="DNS-Resolution-v6" class-name="org.opennms.netmgt.poller.monitors.DNSResolutionMonitor"
/>

<monitor service="DNS-Resolution-v4-and-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />

<monitor service="DNS-Resolution-v4-or-v6" class-name=
"org.opennms.netmgt.poller.monitors.DNSResolutionMonitor" />

To have response time graphs for the name resolution you have to configure RRD graphs for the given ds-names (dns-res-

v4, dns-res-vb, dns-res-both, dns-res-either) in '$SOPENNMS_HOME/etc/response-graph.properties'.

DNSResolutionMonitor vs DnsMonitor

The DNSResolutionMonitor is used to measure the availability and record outages of a name resolution from client
perspective. The service is mainly used for websites or similar public available resources. It can be used in combination

with the Page Sequence Monitor to give a hint if a website isn’t available for DNS reasons.

45

The DnsMonitor on the other hand is a test against a specific DNS server. In OpenNMS the DNS server is the node and the
DnsMonitor will send a lookup request for a given A record to the DNS server IP address. The service goes down if the DNS

server doesn’t have a valid A record in his zone database or as some other issues resolving A records.

2.1.11. FtpMonitor

The FtpMonitor is able to validate ftp connection dial-up processes. The monitor can test ftp server on multiple ports and

specific login data.

The service using the FtpMonitor is up if the FTP server responds with return codes between 200 and 299. For special cases

the service is also marked as up for 425 and 530.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.FtpMonitor

Remote Enabled true

Configuration and Usage

Table 20. Monitor specific parameters for the FtpMonitor.

Parameter Description Required Default value
retry Number of attempts to geta optional 0
valid FTP response/response-
text
timeout Timeout in milliseconds for optional 3000
TCP connection
establishment.
port Alist of TCP ports to which ~ optional 20,21

connection shall be tried.

password This parameter is meantto optional empty string
be used together with the
user parameter to perform
basic
authentication. This
parameter specify to
password to be used. The
user and password
parameters are ignored
when the basic-
authentication parameter is
defined.

userid This parameter is meantto optional -
be used together with the
password parameter to
perform
basic authentication. This
parameter specify to user ID
to be used. The userid and
password parameters are
ignored when the basic-
authentication parameter is
defined.

46

Examples

Some example configuration how to configure the monitor in the 'poller-configuration.xml'

<service name="FTP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>

<parameter key="timeout" value="3000"/>

<parameter key="port" value="21"/>

<parameter key="userid" value=""/>

<parameter key="password" value=""/>

</service>

<service name="FTP-Customer" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>

<parameter key="timeout" value="3000"/>

<parameter key="port" value="21"/>

<parameter key="userid" value="Customer"/>

<parameter key="password" value="MySecretPassword"/>

</service>

<monitor service="FTP" class-name="org.opennms.netmgt.poller.monitors.FtpMonitor"/>
<monitor service="FTP-Customer" class-name="org.opennms.netmgt.poller.monitors.FtpMonitor"/>
Hint
Comment from FtpMonitor source

Also want to accept the following ERROR message generated by some FTP servers following a QUIT command without a

previous successful login: "530 QUIT : User not logged in. Please login with USER and PASS first."

Also want to accept the following ERROR message generated by some FTP servers following a QUIT command without a

previously successful login: "425 Session is disconnected.”

See also: http://tools.ietf.org/html/rfc959

2.1.12. HostResourceSwRunMonitor

This monitor test the running state of one or more processes. It does this via SNMP by inspecting the hrSwRunTable of the
HOST-RESOURCES-MIB. The test is done by matching a given process as hrSwRunName against the numeric value of the
hrSwRunState.

This monitor uses SNMP to accomplish its work. Therefore systems against which it is to be used must have an SNMP agent
installed and configured. Furthermore, the SNMP agent on the system must support the HOST-RESOURCES-MIB. Most
modern SNMP agents, including most distributions of the Net-SNMP agent and the SNMP service that ships with Microsoft
Windows, support this MIB. Out-of-box support for HOST-RESOURCES-MIB among commercial Unix operating systems may

be somewhat spotty.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HostResourceSwRunMonit
or
Remote Enabled false

47

http://tools.ietf.org/html/rfc959
http://www.ietf.org/rfc/rfc2790

Configuration and Usage

Table 21. Monitor specific parameters for the HostResourceSwRunMonitor
Parameter Description Required Default value

port The port of the SNMP agent optional from snmp-config.xml
of the server to test.

retry Number of attempts to geta optional from snmp-config.xml
valid response before
marking the service as down.

timeout Timeout in milliseonds optional from snmp-config.xml
wating for the SNMP
response for the process run
state from the
agent.

service-name The name of the process to required -
be monitored. This
parameter’s value is case-
sensitive and is
evaluated as an exact match.

match-all If the process name appears optional false
multiple times in the
hrSwRunTable, and this
parameter is set to
true, then all instances of the
named process must match
the value specified for
run-level.

run-level The maximum allowable optional 2
value of hrSWRunStatus
among

running(1),

runnable(2) = waiting for
resource

notRunnable(3) = loaded but
waiting for event

invalid(4) = not loaded

service-name-oid The numeric object identifier optional .1.3.6.1.2.1.25.4.2.1.2
(OID) from which process
names are queried. Defaults
to
hrSwRunName and should
never be changed under
normal
circumstances. That said,
changing it to
hrSwRunParameters
(.1.3.6.1.2.1.25.4.2.1.5) is
often helpful when dealing
with processes running
under Java Virtual Machines
which all have
the same process name java.

Parameter Description Required Default value

service-status-oid The numeric Object identifier Optional .1.3.6.1.2.1.25.4.2.1.7
(OID) from which run status
is queried. Defaults to
hrSwRunStatus and should
never be changed under
normal circumstances.

Examples

The following example shows how to monitor the process called httpd running on a server using this monitor. The

configuration in poller-configuration.xml has to be defined as the following:

<service name="Process-httpd" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>
<parameter key="timeout" value="3000"/>
<parameter key="service-name" value="httpd"/><1>
<parameter key="run-level" value="3"/><2>
<parameter key="match-all" value="true"/><3>
</service>

<monitor service="Process-httpd" class-name="org.opennms.netmgt.poller.monitors.HostResourceSwRunMonitor
"/>

@ Name of the process on the system
@ Test the state if the process is in a valid state, i.e. have a run-level no higher than notRunnable(3)

® If the httpd process runs multiple times the test is done for each instance of the process.

2.1.13. HttpMonitor

The HTTP monitor tests the response of an HTTP server on a specific HTTP 'GET' command. During the poll, an attempt is
made to connect on the specified port(s). The monitor can test web server on multiple ports. By default the a test is made
against port 80, 8080 and 8888. If the connection request is successful, an HTTP 'GET' command is sent to the interface. The

response is parsed and a return code extracted and verified.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpMonitor

Remote Enabled true

Configuration and Usage

Table 22. Monitor specific parameters for the HttpMonitor

49

Parameter

basic-authentication

header[0-9]+

host-name

nodelabel-host-name

Description Required

Authentication credentials to optional
perform basic
authentication.

Credentials should comply to
RFC1945 section 11.1,
without the Base64 encoding
part.

That’s: be a string made of
the concatenation of:

1- the user ID;
2- a colon;
3- the password.

basic-authentication takes
precedence over the user and
password parameters.

Additional headers to be sent optional
along with the request.

Example of valid parameter’s
names are

header®, header1 and
header180. header is not a
valid parameter name.

Specify the Host header’s optional
value.

If the host-name parameter optional
isn’t set and the resolve-ip
parameter is set to false,

then OpenNMS will use the
node’s label to set the Host
header’s value if this
parameter

is set to true. Otherwise,
OpenNMS will fall back using
the node interface’s IP
address

as Host header value.

Default value

false

50

http://www.rfc-editor.org/rfc/rfc1945.txt

Parameter

password

port

retry

resolve-ip

response

51

Description Required

This parameter is meantto optional
be used together with the

user parameter to perform

basic

authentication. This
parameter specify to
password to be used. The
user and password

parameters are ignored
when the basic-
authentication parameter is
defined.

Alist of TCP ports to which ~ optional
connection shall be tried.

Number of attempts to geta optional
valid HTTP
response/response-text

If the host-name parameter optional
isn’t set and this parameter is
set to true, OpenNMS will

use DNS to resolve the node
interface’s IP address, and
use the result to set the Host

header’s value. When set to
false and the host-name
parameter isn’t set,
OpenNMS will

try to use the nodelabel-host-
name parameter to set the
Host header’s value.

A comma-separated list of optional
acceptable HTTP response

code ranges.

Example: 200-202,299

Default value

empty string

80,8080,8888

false

If the url parameter is set to
/, the default

value for this parameter is
100-499, otherwise it’s 100-
399.

Parameter

response-text

timeout

url

user

user-agent

verbose

Examples

Description Required

Text to look for in the optional
response body. This will be

matched against every line,

and it

will be considered a success
at the first match. If thereis a
~ at the beginning of

the parameter, the rest of the
string will be used as a
regular expression pattern
match,

otherwise the match will be a
substring match. The regular
expression match is
anchored

at the beginning and end of
the line, so you will likely
need to put a .* on both sides

of your pattern unless you
are going to be matching on
the entire line.

Timeout in milliseconds for optional
TCP connection
establishment.

URL to be retrieved via the optional
HTTP 'GET' command

This parameter is meantto optional
be used together with the

password parameter to

perform

basic authentication. This
parameter specify to user ID
to be used. The user and

password parameters are
ignored when the basic-
authentication parameter is
defined.

Allows you to set the User- optional
Agent HTTP header (see also
RFC2616 section 14.43).

When set to true, full optional
communication between

client and the webserver will

be logged

(with a log level of DEBUG).

Default value

3000

OpenNMS HttpMonitor

52

http://www.rfc-editor.org/rfc/rfc2616.txt

<!-- Test HTTP service on port 80 only -->
<service name="HTTP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="80"/>
<parameter key="url" value="/"/>
</service>

<!-- Test for virtual host opennms.com running -->
<service name="OpenNMSdotCom" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="80"/>
<parameter key="host-name" value="opennms.com"/>
<parameter key="url" value="/solutions"/>
<parameter key="response" value="200-202,299"/>
<parameter key="response-text" value="~.*[Cc]onsulting.*"/>
</service>

<!-- Test for instance of OpenNMS 1.2.9 running -->
<service name="OpenNMS-129" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="8080"/>
<parameter key="url" value="/opennms/event/list"/>
<parameter key="basic-authentication" value="admin:admin"/>
<parameter key="response" value="200"/>
</service>

<monitor service="HTTP" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="OpenNMSdotCom" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor" />
<monitor service="0penNMS-129" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor" />

Testing filtering proxies with HttpMonitor

If you have a filtering proxy server that is supposed to allow retrieval of some URLs but deny others, you can use the

HttpMonitor to verify this behavior.

Let’s say that our proxy server is running on TCP port 3128, and that we should always be able to retrieve
http://www.opennms.org/ but never http://www.myspace.com/ (hey, this is a workplace after all!). To test this behaviour,

one could create the following service monitors:

53

http://www.opennms.org/
http://www.myspace.com/

<service name="HTTP-Allow-opennms.org" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="3128"/>
<parameter key="url" value="http://www.opennms.org/"/>
<parameter key="response" value="200-399"/>
</service>

<service name="HTTP-Block-myspace.com" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="3128"/>
<parameter key="url" value="http://www.myspace.com/"/>
<parameter key="response" value="400-599"/>
</service>

<monitor service="HTTP-Allow-opennms.org" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor"/>
<monitor service="HTTP-Block-myspace.com" class-name="org.opennms.netmgt.poller.monitors.HttpMonitor"/>
2.1.14. HttpPostMonitor

If it is required to HTTP POST any arbitrary content to a remote URI, the HttpPostMonitor can be used. A use case is to
HTTP POST to a SOAP endpoint.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpPostMonitor

Remote Enabled false

Configuration and Usage

Table 23. Monitor specific parameters for the HttpPostMonitor

Parameter Description Required Default value

payload The body of the POST, for required -
example properly escaped
XML.

auth-password The password to use for optional -
HTTP BASIC auth.

auth-username The username to use for optional -
HTTP BASIC auth.

banner A string that is matched optional -
against the response of the
HTTP POST.

If the output contains the
banner, the service is
determined as up.

Specify a regex by starting

with ~.

charset Set the character set for the optional UTF-8
POST.

mimetype Set the mimetype for the optional text/xml
POST.

54

Parameter Description Required Default value

port The port for the web server optional 80
where the POST is send to.

scheme The connection schemeto optional http
use.

usesslfilter Enables or disables the SSL optional false
ceritificate validation. true -
false

uri The uri to use during the optional /
POST.

Examples

The following example would create a POST that contains the payload Word.

<service name="MyServlet" interval="300000" user-defined="false" status="on">
<parameter key="banner" value="Hello"/>
<parameter key="port" value="8080"/>
<parameter key="uri" value="/MyServlet">
<parameter key="payload" value="World"/>
<parameter key="retry" value="1"/>
<parameter key="timeout" value="30000"/>
</service>
<monitor service="MyServlet" class-name="org.opennms.netmgt.poller.monitors.HttpPostMonitor"/>

The resulting POST looks like this:

POST /MyServlet HTTP/1.1
Content-Type: text/xml; charset=utf-8
Host: <ip_addr_of_interface>:8080
Connection: Keep-Alive

World

2.1.15. HttpsMonitor

The HTTPS monitor tests the response of an SSL-enabled HTTP server. The HTTPS monitor is an SSL-enabled extension of
the HTTP monitor with a default TCP port value of 443. All HttpMonitor parameters apply, so please refer to HttpMonitor’s

documentation for more information.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.HttpsMonitor

Remote Enabled true

Configuration and Usage

Table 24. Monitor specific parameters for the HttpsMonitor
Parameter Description Required Default value

port Alist of TCP ports to which optional 443
connection shall be tried.

55

Examples

<!-- Test HTTPS service on port 8443 -->
<service name="HTTPS" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="8443"/>
<parameter key="url" value="/"/>
</service>

<monitor service="HTTPS" class-name="org.opennms.netmgt.poller.monitors.HttpsMonitor" />

2.1.16. IcmpMonitor

The ICMP monitor tests for ICMP service availability by sending echo request ICMP messages. The service is considered

available when the node sends back an echo reply ICMP message within the specified amount of time.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.IcmpMonitor

Remote Enabled true with some restrictions (see helow)

Configuration and Usage

Table 25. Monitor specific parameters for the IcmpMonitor

Parameter Description Required Default value
packet-size Number of bytes of the ICMP optional 64
packet to send.
retry Number of attempts to geta optional 2
response.
timeout Time in milliseconds to wait optional 800

for a response.

thresholding-enabled Enables ICMP thresholding optional true
Examples

<service name="ICMP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="icmp"/>
<parameter key="ds-name" value="icmp"/>
</service>
<monitor service="ICMP" class-name="org.opennms.netmgt.poller.monitors.IcmpMonitor"/>

Note on Remote Poller

The IcmpMonitor needs the JNA ICMP implementation to function on remote poller. Though, corner cases exist where the
IcmpMonitor monitor won’t work on remote poller. Examples of such corner cases are: Windows when the remote poller
isn’t running has administrator, and Linux on ARM / Rasperry Pi. JNA is the default ICMP implementation used in the

remote poller.

56

2.1.17. ImapMonitor

This monitor checks if an IMAP server is functional. The test is done by initializing a very simple IMAP conversation. The

ImapMonitor establishes a TCP connection, sends a logout command and test the IMAP server responses.

The behavior can be simulated with telnet:

telnet mail.myserver.de 143

Trying 62.108.41.197...

Connected to mail.myserver.de.

Escape character is 'A]'.

* 0K [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE IDLE STARTTLS LOGINDISABLED] Dovecot

ready.

ONMSPOLLER LOGOUT

* BYE Logging out

ONMSPOLLER OK Logout completed.

Connection closed by foreign host.
@ Test IMAP server banner, it has to start * 0K to be up
@ Sending a ONMSPOLLER LOGOUT

® Test server responds with, it has to start with * BYE to be up

If one of the tests in the sample above fails the service is marked down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.ImapMonitor

Remote Enabled false

Configuration and Usage

Table 26. Monitor specific parameters for the ImapMonitor

Parameter Description Required Default value
retry Number of attempts to geta optional 0

valid IMAP response
timeout Time in milliseconds to wait optional 3000

retrieving the banner from
TCP connection before trying
a next attempt.

port The port of the IMAP server. optional 143

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml

57

<!-- Test IMAP service on port 143 only -->

<service name="IMAP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="port" value="143"/>
<parameter key="timeout" value="3000"/>

</service>

<monitor service="IMAP" class-name="org.opennms.netmgt.poller.monitors.ImapMonitor" />

2.1.18. JCifsMonitor

This monitor allows to test a file sharing service based on the CIFS/SMB protocol.

This monitor is not installed by default. You have to install opennmms-plugin-protocol-cifs from your
WARNING , , .
OpenNMS installation repository.

With the JCIFS monitor you have different possibilities to test the availability of the JCIFS service:
With the JCifsMonitor it is possible to run tests for the following use cases:
 share is available in the network
* agiven file exists in the share
» a given folder exists in the share
* agiven folder should contain at least one (1) file
 agiven folder folder should contain no (0) files
* by testing on files and folders, you can use a regular expression to ignore specific file and folder names from the test

A network resource in SMB like a file or folder is addressed as a UNC Path.

\\server\share\folder\file.txt

The Java implementation jCIFS, which implements the CIFS/SMB network protocol, uses SMB URLs to access the network
resource. The same resource as in our example would look like this as an SMB URL:

smb://workgroup;user:password@server/share/folder/file.txt

The JCifsMonitor can not test:
» file contains specific content
¢ aspecific number of files in a folder, for example folder should contain exactly / more or less than x files
» Age or modification time stamps of files or folders

* Permissions or other attributes of files or folders

58

https://en.wikipedia.org/wiki/Path_%28computing%29#Uniform_Naming_Convention
http://www.iana.org/assignments/uri-schemes/prov/smb

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JCifsMonitor

Remote Enabled false

Configuration and Usage

Table 27. Monitor specific parameters for the JCifsMonitor
Parameter Description Required Default value

retry Number of retries before the optional 0
service is marked as down.

timeout Time in milliseconds to wait optional 3000
for the SMB service.

domain Windows domain where the optional empty String
user is located. You don’t
have to use the domain
parameter if you use
local user accounts.

LUSENNAme Username to access the optional empty String
resource over a network

password Password for the user optional empty String

path Path to the resource you required empty String
want to test

mode The test mode which has the optional path_exist
following options

path_exist: Service is up if
the resource is accessible

path_not_exist: Service is up
if the resource is not
accessible

folder_empty: Service is up if
the folder is empty (O files)

folder_not_empty: Service is
up if the folder has at least
one file

smbHost Override the IP address of optional empty String
the SMB url to check shares
on different file servers.

folderIgnorefiles Ignore specific files in folder optional -
with regular expression. This
parameter will just be
applied on
folder_empty and
folder_not_empty, otherwise
it will be ignored.

TIP It makes little sense to have retries higher than 1. It is a waste of resources during the monitoring.

59

Please consider, if you are accessing shares with Mac OSX you have some side effects with the hidden file
TIP "DS_Store.' It could give you false positives in monitoring, you can use then the folderIgnoreFiles

parameter.

Example test existence of a file

This example shows how to configure the JCifsMonitor to test if a file share is available over a network. For this example
we have access to a share for error logs and we want to get an outage if we have any error log files in our folder. The share
is named log. The service should go back to normal if the error log file is deleted and the folder is empty.

JCifsMonitor configuration to test that a shared folder is empty

<service name="CIFS-ErrorLog" interval="30000" user-defined="true" status="on">
<parameter key="retry" value="1" />
<parameter key="timeout" value="3000" />
<parameter key="domain" value="contoso" /><1>
<parameter key="username" value="MonitoringUser" /><2>
<parameter key="password" value="MonitoringPassword" /><3>
<parameter key="path" value="/fileshare/log/" /><4>
<parameter key="mode" value="folder_empty" /><5>
</service>

<monitor service="CIFS-ErrorLog" class-name="org.opennms.netmgt.poller.monitors.JCifsMonitor" />
@ Name of the SMB or Microsoft Windows Domain
@ User for accessing the share
® Password for accessing the share

@ Path to the folder inside of the share as part of the SMB URL

® Mode is set to folder_empty

2.1.19. JDBCMonitor

The JDBCMonitor checks that it is able to connect to a database and checks if it is able to get the database catalog from that
database management system (DBMS). It is based on the JDBC technology to connect and communicate with the database.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCMonitor

Remote Enabled true

Configuration and Usage

Table 28. Monitor specific parameters for the [JDBCMonitor

Parameter Description Required Default value

driver JDBC driver class to use required \clce)r:.sybase .jdbc2. jdbe. SybDri

url JDBC Url to connect to. required jdbe:sybase:Tds:OPENNMS_JDBC
_HOSTNAME/tempdb

user Database user required sa

password Database password required empty string

60

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Parameter Description Required Default value

timeout Timeout in ms for the optional 3000
database connection

retries How many retries should be optional 0
performed before failing the
test

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or resolved hostname of
the interface the monitored service is assigned to.

NOTE

Provide the database driver

The JDBCMonitor is based on JDBC and requires a JDBC driver to communicate with any database. Due to the fact that
OpenNMS itself uses a PostgreSQL database, the PostgreSQL JDBC driver is available out of the box. For all other database
systems a compatible JDBC driver has to be provided to OpenNMS as a jar-file. To provide a JDBC driver place the driver-jar
in the opennms/1ib folder of your OpenNMS. To use the JDBCMonitor from a remote poller, the driver-jar has to be provided
to the Remote Poller too. This may be tricky or impossible when using the Java Webstart Remote Poller, because of code

signing requirements.

Examples

The following example checks if the PostgreSQL database used by OpenNMS is available.

<service name="0OpenNMS-DBMS" interval="30000" user-defined="true" status="on">
<parameter key="driver" value="org.postgresql.Driver"/>
<parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
<parameter key="user" value="opennms"/>
<parameter key="password" value="opennms"/>

</service>

<monitor service="OpenNMS-DBMS" class-name="org.opennms.netmgt.poller.monitors.JDBCMonitor" />

2.1.20. J]DBCStoredProcedureMonitor

The JDBCStoredProcedureMonitor checks the result of a stored procedure in a remote database. The result of the stored
procedure has to be a boolean value (representing true or false). The service associated with this monitor is marked as up
if the stored procedure returns true and it is marked as down in all other cases. It is based on the JDBC technology to

connect and communicate with the database.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCStoredProcedureMon
itor
Remote Enabled false

Configuration and Usage

Table 29. Monitor specific parameters for the JDBCStoredProcedureMonitor

Parameter Description Required Default value
driver IDBC driver class to use required com.sybase.jdch.jdbc.Sberi
ver

61

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Parameter Description Required Default value

url JDBC Url to connect to. required jdbc:sybase:Tds:OPENNMS_JDBC
_HOSTNAME/tempdb

user Database user required Sa

password Database password required empty string

timeout Timeout in ms for the optional 3000

database connection

retries How many retries should be optional 0
performed before failing the
test

stored-procedure Name of the database stored required -

procedure to call

schema Name of the database optional test
schema in which the stored
procedure is

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or resolved hostname of
the interface the monitored service is assigned to.

NOTE

Provide the database driver

The JDBCStoredProcedureMonitor is based on JDBC and requires a JDBC driver to communicate with any database. Due to
the fact that OpenNMS itself uses a PostgreSQL database, the PostgreSQL JDBC driver is available out of the box. For all
other database systems a compatible JDBC driver has to be provided to OpenNMS as a jar-file. To provide a JDBC driver
place the driver-jar in the opennms/1ib folder of your OpenNMS. To use the JDBCStoredProcedureMonitor from a remote
poller, the driver-jar has to be provided to the Remote Poller too. This may be tricky or impossible when using the Java

Webstart Remote Poller, because of code signing requirements.

Examples

The following example checks a stored procedure added to the PostgreSQL database used by OpenNMS. The stored

procedure returns true as long as less than 250000 events are in the events table of OpenNMS.

Stored procedure which is used in the monitor

CREATE OR REPLACE FUNCTION eventlimit_sp() RETURNS boolean AS
$BODY$DECLARE

num_events integer;

BEGIN

SELECT COUNT(*) into num_events from events;

RETURN num_events > 250000;

END; $BODY$

LANGUAGE plpgsql VOLATILE NOT LEAKPROOF

COST 100;

62

<service name="0OpenNMS-DB-SP-Event-Limit" interval="300000" user-defined="true" status="on">
<parameter key="driver" value="org.postgresql.Driver"/>
<parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
<parameter key="user" value="opennms"/>
<parameter key="password" value="opennms"/>
<parameter key="stored-procedure" value="eventlimit_sp"/>
<parameter key="schema" value="public"/>

</service>

<monitor service="0penNMS-DB-SP-Event-Limit" class-name=
"org.opennms.netmgt.poller.monitors.JDBCStoredProcedureMonitor”/>

2.1.21. JDBCQueryMonitor

The JDBCQueryMonitor runs an SQL query against a database and is able to verify the result of the query. A read-only
connection is used to run the SQL query, so the data in the database is not altered. It is based on the JDBC technology to
connect and communicate with the database.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JDBCQueryMonitor

Remote Enabled false

Configuration and Usage

Table 30. Monitor specific parameters for the JDBCQueryMonitor

Parameter Description Required Default value
driver JDBC driver class to use required \clgr:.sybase .jdbe2. jdbe. SybDri
url JDBC URL to connect to. required jdbe:sybase:Tds:OPENNMS_JDBC
_HOSTNAME/tempdb
user Database user required sa
password Database password required empty string
query The SQL query to run required -
action What evaluation action to required row_count
perform
column The result column to optional -

evaluate against

operator Operator to use for the required >=
evaluation
operand The operand to compare required depends on the action

against the SQL query result

message The message to use if the optional generic message depending
service is down. on the action
Both operands and the
operator are added to the
message too.

timeout Timeout in ms for the optional 3000
database connection

63

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Parameter Description Required Default value

retries How many retries should be optional 0
performed before failing the
test

The OPENNMS_JDBC_HOSTNAME is replaced in the url parameter with the IP or resolved hostname of
the interface the monitored service is assigned to.

NOTE

Table 31. Available action parameters and their default operand

Parameter Description Default operand
row_count The number of returned rows is 1

compared, not a value of the resulting

rows
compare_string Strings are always checked for equality -

with the operand

compare_int An integer from a column of the first 1
result row is compared

Table 32. Available operand parameters

Parameter XML entity to use in XML configs
< <
> >
I= I=
&1t;=
>= > =

Evaluating the action - operator - operand

Only the first result row returned by the SQL query is evaluated. The evaluation can be against the value of one column or
the number of rows returned by the SQL query.

Provide the database driver

The JDBCQueryMonitor is based on JDBC and requires a JDBC driver to communicate with any database. Due to the fact
that OpenNMS itself uses a PostgreSQL database, the PostgreSQL JDBC driver is available out of the box. For all other
database systems a compatible JDBC driver has to be provided to OpenNMS as a jar-file. To provide a JDBC driver place the
driver-jar in the opennms/1ib folder of your OpenNMS. To use the JDBCQueryMonitor from a remote poller, the driver-jar has
to be provided to the Remote Poller too. This may be tricky or impossible when using the Java Webstart Remote Poller,
because of code signing requirements.

Examples

The following example checks if the number of events in the OpenNMS database is fewer than 250000.

64

<service name="OpenNMS-DB-Event-Limit" interval="30000" user-defined="true" status="on">
<parameter key="driver" value="org.postgresql.Driver"/>
<parameter key="url" value="jdbc:postgresql://OPENNMS_JDBC_HOSTNAME:5432/opennms"/>
<parameter key="user" value="opennms"/>
<parameter key="password" value="opennms"/>
<parameter key="query" value="select eventid from events" />
<parameter key="action" value="row_count" />
<parameter key="operand" value="250000" />

<parameter key="operator" value="<" />
<parameter key="message" value="too many events in OpenNMS database" />
</service>

<monitor service="0OpenNMS-DB-Event-Limit" class-name="org.opennms.netmgt.poller.monitors.JDBCQueryMonitor"
/>

2.1.22. JolokiaBeanMonitor

The JolokiaBeanMonitor is a JMX monitor specialized for the use with the Jolokia framework. If it is required to execute a
method via JMX or poll an attribute via JMX, the JolokiaBeanMonitor can be used. It requires a fully installed and
configured Jolokia agent to be deployed in the JVM container. If required it allows attribute names, paths, and method
parameters to be provided additional arguments to the call. To determine the status of the service the JolokiaBeanMonitor
relies on the output to be matched against a banner. If the banner is part of the output the status is interpreted as up. If the
banner is not available in the output the status is determined as down. Banner matching supports regular expression and

substring match.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.JolokiaBeanMonitor

Remote Enabled false

Configuration and Usage

Table 33. Monitor specific parameters for the JolokiaBeanMonitor

Parameter Description Required Default value

beanname The bean name to query required -
against.

attrname The name of the JMX optional (attrname or -
attribute to scrape. methodname must be set)

attrpath The attribute path. optional -

auth-username The username to use for optional -
HTTP BASIC auth.

auth-password The password to use for optional -
HTTP BASIC auth.

banner A string that is match against optional -

65

the output of the system-call.
If the output contains the
banner,

the service is determined as
up. Specify a regex by
starting with ~.

http://www.jolokia.org

Parameter Description Required Default value

input1 Method input optional -
input2 Method input optional =
methodname The name of the bean optional (attrname or -

method to execute, output methodname must be set)
will be compared to banner.

port The port of the jolokia agent. optional 8080
url The jolokia agent url. optional -
Defaults to
"http://<ipaddr>:<port>/joloki
Q"

Table 34. Variables which can be used in the configuration

Variable Description
${ipaddr} IP-address of the interface the service is bound to.
${port} Port the service it bound to.

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml

<parameter key="url" value="http://${ipaddr}:${port}/jolokia"/>
<parameter key="url" value="https://${ipaddr}:${port}/jolokia"/>

AttrName vs MethodName

The JolokiaBeanMonitor has two modes of operation. It can either scrape an attribute from a bean, or execute a method
and compare output to a banner. The method execute is useful when your application has it’s own test methods that you
would like to trigger via OpenNMS.

The args to execute a test method called "superTest" that take in a string as input would look like this:

<parameter key="beanname" value="MyBean" />
<parameter key="methodname" value="superTest" />
<parameter key="input1" value="someString"/>

The args to scrape an attribute from the same bean would look like this:

<parameter key="beanname" value="MyBean" />
<parameter key="attrname" value="upTime" />

2.1.23. LdapMonitor

The LDAP monitor tests for LDAP service availability. The LDAP monitor first tries to establish a TCP connection on the
specified port. Then, if it succeeds, it will attempt to establish an LDAP connection and do a simple search. If the search
returns a result within the specified timeout and attempts, the service will be considered available. The scope of the LDAP
search is limited to the immediate subordinates of the base object. The LDAP search is anonymous by default. The LDAP

monitor makes use of the com.novell.ldap.LDAPConnection class.

66

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.LdapMonitor

Remote Enabled true

Configuration and Usage

Table 35. Monitor specific parameters for the LdapMonitor

Parameter Description Required Default value
dn The distinguished name to optional -
use if authenticated search is
needed.
password The password to use if optional -
authenticated search is
needed.
port The destination port where optional 389
connection shall be
attempted.
retry Number of attempts to geta optional 1

search result.

searchbase The base distinguished name optional base
to search from.

searchfilter The LDAP search’s filter. optional (objectclass=*)

timeout Time in milliseconds to wait optional 3000
for a result from the search.

version The version of the LDAP optional 3
protocol to use, specified as
an integer.
Note: Only LDAPv3 is
supported at the moment.

Examples

<--! OpenNMS.org -->
<service name="LDAP" interval="300000" user-defined="false" status="on">
<parameter key="port" value="389"/>
<parameter key="version" value="3"/>
<parameter key="searchbase" value="dc=opennms,dc=org"/>
<parameter key="searchfilter" value="uid=ulf"/>
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="1dap"/>
<parameter key="ds-name" value="1dap"/>
</service>
<monitor service="LDAP" class-name="org.opennms.netmgt.poller.monitors.LdapMonitor"/>

2.1.24. LdapsMonitor

The LDAPS monitor tests the response of an SSL-enabled LDAP server. The LDAPS monitor is an SSL-enabled extension of
the LDAP monitor with a default TCP port value of 636. All LdapMonitor parameters apply, so please refer to LdapMonitor’s

documentation for more information.

67

Monitor facts
Class Name

Remote Enabled

Configuration and Usage

Table 36. Monitor specific parameters for the LdapsMonitor

Parameter Description
port The destination port where
connections shall be
attempted.
Examples

<!-- LDAPS service at OpenNMS.org is on port 6636 -->

org.opennms.netmgt.poller.monitors.LdapsMonitor

true
Required Default value
optional 636

<service name="LDAPS" interval="300000" user-defined="false" status="on">

<parameter key="port" value="6636"/>
<parameter key="version" value="3"/>
<parameter key="searchbase" value="dc=opennms,dc=org"/>
<parameter key="searchfilter" value="uid=ulf"/>
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="1dap"/>
<parameter key="ds-name" value="1dap"/>
</service>

<monitor service="LDAPS" class-name="org.opennms.netmgt.poller.monitors.LdapsMonitor" />

2.1.25. MemcachedMonitor

This monitor allows to monitor Memcached, a distributed memory object caching system. To monitor the service

availability the monitor tests if the Memcached statistics can be requested. The statistics are processed and stored in RRD

files. The following metrics are collected:

Table 37. Collected metrics using the MemcachedMonitor
Metric

uptime

rusageuser
rusagesystem
curritems
totalitems

bytes
limitmaxbytes
currconnections

totalconnections

Description

Seconds the Memcached server has been running since last
restart.

User time seconds for the server process.

System time seconds for the server process.
Number of items in this servers cache.

Number of items stored on this server.

Number of bytes currently used for caching items.
Maximum configured cache size.

Number of open connections to this Memcached.

Number of successful connect attempts to this server since
start.

68

http://memcached.org

Metric

connectionstructure

cmdget
cmdset

gethits

getmisses

evictions

bytesread
byteswritten

threads

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

Description

Number of internal connection handles currently held by
the server.

Number of GET commands received since server startup.
Number of SET commands received since server startup.

Number of successful GET commands (cache hits) since
startup.

Number of failed GET requests, because nothing was
cached.

Number of objects removed from the cache to free up
memory.

Number of bytes received from the network.
Number of bytes send to the network.

Number of threads used by this server.

org.opennms.netmgt.poller.monitors.MemcachedMonitor

true

Table 38. Monitor specific parameters for the MemcachedMonitor

Parameter

timeout

retry

port

Examples

Description Required

Timeout in milliseconds for optional
Memcached connection
establishment.

Number of attempts to optional
establish the Memcached
connnection.

TCP port connecting to optional
Memcached.

Default value

3000

1121

The following example shows a configuration in the poller-configuration.xml.

<service name="Memcached" interval="300000" user-defined="false" status="on">

<parameter key="port" value="11211" />
<parameter key="retry" value="2" />
<parameter key="timeout" value="3000" />

<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response" />

<parameter key="ds-name" value="memcached" />
<parameter key="rrd-base-name" value="memcached" />

</service>

<monitor service="Memcached" class-name="org.opennms.netmgt.poller.monitors.MemcachedMonitor" />

69

2.1.26. NetScalerGroupHealthMonitor

This monitor is designed for Citrix® NetScaler® loadbalancing checks. It checks if more than x percent of the servers
assigned to a specific group on a loadbalanced service are active. The required data is gathered via SNMP from the
NetScaler®. The status of the servers is determined by the NetScaler®. The provided service it self is not part of the check.

The basis of this monitor is the SnmpMonitorStrategy. A valid SNMP configuration in OpenNMS for the NetScaler® is
required.

NOTE A NetScaler® can manage several groups of servers per application. This monitor just covers one group

at a time. If there are multiple groups to check, define one monitor per group.
CAUTION This monitor is not checking the loadbalanced service it self.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NetScalerGroupHealthMo
nitor
Remote Enabled false

Configuration and Usage

Table 39. Monitor specific parameters for the NetScalerGroupHealthMonitor
Parameter Description Required Default value

group-name The name of the server required -
group to check

group-health The percentage of active optional 60
servers vs total server of the
group as an integer

Examples

The following example checks a server group called central webfront_http. If at least 70% of the servers are active, the

service is up. If less then 70% of the servers are active the service is down. A configuration like the following can be used
for the example in the poller-configuration.xml.

<service name="NetScaler_Health" interval="300000" user-defined="false" status="on">
<parameter key="group-name" value="central_webfront_http" />
<parameter key="group-health" value="70" />

</service>

<monitor service="NetScaler_Health" class-name=
"org.opennms.netmgt.poller.monitors.NetScalerGroupHealthMonitor />

Details about the used SNMP checks

The monitor checks the status of the server group based on the NS-ROOT-MIB using the svcGrpMemberState.
svcGrpMemberState is part of the serviceGroupMemberTable. The serviceGroupMemberTable is indexed by
svcGrpMemberGroupName and svcGrpMemberName. A initial lookup for the group-name is performed. Based on the lookup
the serviceGroupMemberTable is walked with the numeric representation of the server group. The monitor interprets just

the server status code 7-up as active server. Other status codes like 2-unknown or 3-busy are counted for total amount of
servers.

70

2.1.27. NrpeMonitor

This monitor allows to test plugins and checks running on the Nagios Remote Plugin Executor (NRPE) framework. The
monitor allows to test the status output of any available check command executed by NRPE. Between OpenNMS and Nagios
are some conceptional differences. In OpenNMS a service can only be available or not available and the response time for
the service is measured. Nagios on the other hand combines service availability, performance data collection and
thresholding in one check command. For this reason a Nagios check command can have more states then OK and
CRITICAL. Using the NrpeMonitor marks all check command results other than OK as down. The full output of the check

command output message is passed into the service down event in OpenNMS.

NRPE configuration on the server is required and the check command has to be configured, e.g.

IMPORTANT . . .
command[check_apt]=/usr/1lib/nagios/plugins/check_apt
OpenNMS executes every NRPE check in a Java thread without fork() a process and it is more
CAUTION resource friendly. Nevertheless it is possible to run NRPE plugins which combine a lot of external
programs like sed, awk or cut. Be aware, each command end up in forking additional processes.
Monitor facts
Class Name org.opennms.netmgt.poller.monitors.NrpeMonitor
Remote Enabled false

Configuration and Usage

Table 40. Monitor specific parameters for the NrpeMonitor
Parameter Description Required Default value

retry Number of retries before the optional 0
service is marked as down.

timeout Time in milliseconds to wait optional 3000
for the NRPE executing a
check command.

command The {check_name} of the required empty
command configured as
“command[{check name}]="/
path/to/plugin/check-script”

port Port to access NRPE on the optional 5606
remote server.

padding Padding for sending the optional 2
command to the NRPE agent.

usessl Enable encryption of optional true
network communication.
NRPE uses SSL with
anonymous DH and the
following cipher
suite
TLS DH_anon WITH_AES 12
8 CBC_SHA

Example: Using check_apt with NRPE

This examples shows how to configure the NrpeMonitor running the check_apt command on a configured NRPE.

71

http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE—​2D-Nagios-Remote-Plugin-Executor/details

Configuration of the NRPE check command on the agent in ‘nrpe.cfg’

command[check_apt]=/usr/1ib/nagios/plugins/check_apt

Configuration to test the NRPE plugin with the NrpeMonitor

<service name="NRPE-Check-APT" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3" />
<parameter key="timeout" value="3000" />
<parameter key="port" value="5666" />
<parameter key="command" value="check_apt" />
<parameter key="padding" value="2" />
</service>

<monitor service="NRPE-Check-APT" class-name="org.opennms.netmgt.poller.monitors.NrpeMonitor" />

2.1.28. NtpMonitor

The NTP monitor tests for NTP service availability. During the poll an NTP request query packet is generated. If a response

is received, it is parsed and validated. If the response is a valid NTP response, the service is considered available.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.NtpMonitor

Remote Enabled true

Configuration and Usage

Table 41. Monitor specific parameters for the NtpMonitor
Parameter Description Required Default value

port The destination port where optional 123
the NTP request shall be sent.

retry Number of attempts to geta optional 0
response.
timeout Time in milliseconds to wait optional 5000

for a response.
Examples

<--1 Fast NTP server -->
<service name="NTP" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="1000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="ntp"/>
<parameter key="ds-name" value="ntp"/>
</service>
<monitor service="NTP" class-name="org.opennms.netmgt.poller.monitors.NtpMonitor"/>

2.1.29. OmsaStorageMonitor

With OmsaStorageMonitor you are able to monitor your Dell OpenManaged servers RAID array status. The following OIDS

72

http://de.community.dell.com/techcenter/systems-management/w/wiki/438.dell-openmanage-server-administrator-omsa.aspx

from the STORAGEMANAGEMENT-MIB are supported by this monitor:

virtualDiskRollUpStatus .1.3.6.1.4.1.674.10893.1.20.140.1.1.19
arrayDiskLogicalConnectionVirtualDiskNumber .1.3.6.1.4.1.674.10893.1.20.140.3.1.5
arrayDiskNexusID .1.3.6.1.4.1.674.10893.1.20.130.4.1.26
arrayDiskLogicalConnectionArrayDiskNumber .1.3.6.1.4.1.674.10893.1.20.140.3.1.3
arrayDiskState .1.3.6.1.4.1.674.10893.1.20.130.4.1.4

To test the status of the disk array the virtualDiskRollUpStatus is used. If the result of the virtualDiskRollUpStatus is not 3
the monitors is marked as down.

Table 42. Possible result of virtual disk rollup status

Result State description Monitor state in OpenNMS
1 other DOWN

2 unknown DOWN

3 ok UP

4 non-critical DOWN

5 critical DOWN

6 non-recoverable DOWN

Youll need to know the maximum number of possible logical disks you have in your environment.
IMPORTANT

For example: If you have 3 RAID arrays, you need for each logical disk array a service poller.

To give more detailed information in case of an disk array error, the monitor tries to identify the problem using the other
OIDs. This values are used to enrich the error reason in the service down event. The disk array state is resolved to a human
readable value by the following status table.

Table 43. Possible array disk state errors

Value Status

1 Ready

2 Failed

3 Online

4 Offline

6 Degraded

7 Recovering
1 Removed

15 Resynching
24 Rebuilding
25 noMedia

26 Formating
28 Running Diagnostics
35 Initializing

73

http://support.dell.com/support/systemsinfo/document.aspx?~file=/software/svradmin/2.2/en/snmp/snmpc22.htm

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.OmsaStorageMonitor

Remote Enabled false

Configuration and Usage

Monitor specific parameters for the OmsaStorageMonitor

Parameter Description Required Default value
virtualDiskNumber The disk index of your RAID optional 1

array
retry Amount of attempts opening optional from snmp-config.xml

a connection and try to get
the greeting banner before
the service
goes down.

timeout Time in milliseconds to wait optional from snmp-config.xml
before receiving the
SNMP response.

port The TCP port OpenManage is optional from snmp-config.xml
listening

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

The RAID array monitor for your first array is configured with virtualDiskNumber = 1 and can look like this:

<service name="OMSA-Disk-Array-1" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>

<parameter key="timeout" value="6000"/>

<parameter key="virtualDiskNumber" value="1"/>

</service>

<monitor service="OMSA-Disk-Array-1" class-name="org.opennms.netmgt.poller.monitors.OmsaStorageMonitor"/>

If there is more than one RAID array to monitor you need an additional configuration. In this case virtualDiskNumber = 2.
And so on...

<service name="OMSA-Disk-Array-2" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>

<parameter key="timeout" value="6000"/>

<parameter key="virtualDiskNumber" value="2"/>

</service>

<monitor service="OMSA-Disk-Array-2" class-name="org.opennms.netmgt.poller.monitors.OmsaStorageMonitor"/>

2.1.30. OpenManageChassisMonitor

The OpenManageChassis monitor tests the status of a Dell chassis by querying its SNMP agent. The monitor polls the value
of the node’s SNMP OID .1.3.6.1.4.1.674.10892.1.300.10.1.4.1 (MIB-Dell-10892::chassisStatus). If the value is OK (3), the service

74

is considered available.
As this monitor uses SNMP, the queried nodes must have proper SNMP configuration in snmp-config.xml.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.0OpenManageChassisMonit
or
Remote Enabled false

Configuration and Usage

Table 44. Monitor specific parameters for the OpenManageChassisMonitor

Parameter Description Required Default value

port The port to which connection optional from snmp-config.xml
shall be tried.

retry Number of polls to attempt. optional from snmp-config.xml

timeout Time (in milliseconds) to optional from snmp-config.xml
wait before receiving the
SNMP response.

Examples

<!-- Overriding default SNMP config -->

<service name="OMA-Chassis" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>
<parameter key="timeout" value="5000"/>

</service>

<monitor service="OMA-Chassis" class-name="org.opennms.netmgt.poller.monitors.OpenManageChassisMonitor" />

Dell MIBs

Dell MIBs can be found here. Download the DCMIB<version>.zip or DCMIB<version>.exe file corresponding to the version

of your OpenManage agents. The latest one should be good enough for all previous version though.

2.1.31. PercMonitor

This monitor tests the status of a PERC RAID array.

The monitor first polls the RAID-Adapter-MIB::logicaldriveTable (1.3.6.1.4.1.3582.1.1.2) to retrieve the status of the RAID
array you want to monitor. If the value of the status object of the corresponding logicaldriveEntry is not 2, the array is
degraded and the monitor further polls the RAID-Adapter-MIB::physicaldriveTable (1.3.6.1.4.1.3582.1.1.3) to detect the
failed drive(s).

This monitor requires the outdated persnmpd software to be installed on the polled nodes.
IMPORTANT . , _ .
Please prefer using OmsaStorageMonitor monitor where possible.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.PercMonitor

Remote Enabled false (relies on SNMP configuration)

75

ftp://ftp.us.dell.com/sysman

Configuration and Usage

Table 45. Monitor specific parameters for the PercMonitor

Parameter

array

port

retry

timeout

Examples

<!-- Monitor 1st RAID arrays using configuration from snmp-config.xml -->
<service name="PERC" interval="300000" user-defined="false" status="on" />

Description

The RAID array you want to
monitor.

The UDP port to connect to

The number of attempts the
monitor shall try getting a
response.

The amount of thime in
milliseconds the monitor
shall wait for a reponse
during

each polling attempt.

Required

optional

optional

optional

optional

Default value

0.0

from snmp-config.xml

from snmp-config.xml

from snmp-config.xml

<monitor service="PERC" class-name="org.opennms.netmgt.poller.monitors.PercMonitor" />

2.1.32. Pop3Monitor

The POP3 monitor tests for POP3 service availability on a node. The monitor first tries to establish a TCP connection on the

specified port. If a connection is established, a service banner should have been received. The monitor makes sure the

service banner is a valid POP3 banner (ie: starts with "+OK"). If the banner is valid, the monitor sends a QUIT POP3

command and makes sure the service answers with a valid response (ie: a response that starts with "+OK"). The service is

considered available if the service’s answer to the QUIT command is valid.

The behaviour can be simulated with telnet:

$ telnet mail.opennms.org 110

Trying 192.168.0.100

Connected to mail.opennms.org.

Escape character is 'A]'.

+0K <21860.1076718099@mail.opennms.org>

quit
+0K

Connection closed by foreign host.

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

Table 46. Monitor specific parameters for the Pop3Monitor

org.opennms.netmgt.poller.monitors.Pop3Monitor

true

76

Parameter

port

retry

strict-timeout

timeout

Examples

<service name="POP3" interval="300000" user-defined="false" status="on">

<parameter
<parameter
<parameter
<parameter
<parameter
</service>

Description Required
TCP port to connect to. optional

Number of attempts to find optional
the service available.

Boolean optional
If set to true, makes sure that

at least timeout milliseconds

are elapsed between

attempts.

Timeout in milliseconds for optional
the underlying socket’s
connect and read operations.

key="retry" value="2"/>
key="timeout" value="3000"/>

key="rrd-repository" value="/var/lib/opennms/rrd/response"/>

key="rrd-base-name" value="pop3"/>
key="ds-name" value="pop3"/>

Default value

110

0

false

3000

<monitor service="POP3" class-name="org.opennms.netmgt.poller.monitors.Pop3Monitor"/>

2.1.33. PrTableMonitor

The PrTableMonitor monitor tests the prTable of a net-snmp SNMP agent.

A table containing information on running programs/daemons configured for monitoring

in the snmpd.conf file of the agent. Processes violating the number of running processes

required by the agent’s configuration file are flagged with numerical and textual errors.

— UCD-SNMP-MIB

The monitor looks up the prErrorFlag entries of this table. If the value of a prErrorFlag entry in this table is set to "1" the

service is considered unavailable.

A Error flag to indicate trouble with a process. It goes to 1 if there is an error, 0 if no error.

— UCD-SNMP-MIB

Monitor facts

Class Name

org.opennms.netmgt.poller.monitors.PrTableMonitor

Remote Enabled false

Configuration and Usage

Table 47. Monitor specific parameters for the PrTableMonitor

77

http://www.net-snmp.org/docs/mibs/ucdavis.html#prTable

Parameter Description Required Default value

port The port to which connection optional from snmp-config.xml
shall be tried.

retry Number of polls to attempt. optional from snmp-config.xml

retries Deprecated. optional from snmp-config.xml

Same as retry.
Parameter retry takes
precedence if both are set.

timeout Time in milliseconds to wait optional from snmp-config.xml
before receiving the SNMP
response.
Examples

<!-- Overriding default SNMP config -->

<service name="Process-Table" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="3"/>
<parameter key="timeout" value="5000"/>

</service>

<monitor service="Process-Table" class-name="org.opennms.netmgt.poller.monitors.PrTableMonitor" />

UCD-SNMP-MIB

The UCD-SNMP-MIB may be found here.

2.1.34. RadiusAuthMonitor

This monitor allows to test the functionality of the RADIUS authentication system. The availability is tested by sending an
AUTH packet to the RADIUS server. If a valid ACCEPT response is received, the RADIUS service is up and considered as

available.

IMPORTANT To use this monitor it is required to install the RADIUS protocol for OpenNMS.

{apt-get,yum} install opennms-plugin-protocol-radius

The test is similar to test the behavior of a RADIUS server by evaluating the result with the command line tool radtest.

root@vagrant:~# radtest "John Doe" hello 127.0.0.1 1812 radiuspassword

Sending Access-Request of id 49 to 127.0.0.7 port 1812

User-Name = "John Doe"

User-Password = "hello"

NAS-IP-Address = 127.0.0.1

NAS-Port = 1812

Message-Authenticator = 0x00000000000000000000000000000000

rad_recv: Access-Accept packet from host 127.0.0.1 port 1812, id=49, length=37 <1>
Reply-Message = "Hello, John Doe"

@ The Access-Accept message which is evaluated by the monitor.

78

http://www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt
http://freeradius.org/rfc/rfc2865.html

Monitor facts

Class Name

org.opennms.protocols.radius.monitor.RadiusAuthMonitor

Remote Enabled false

Configuration and Usage

Table 48. Monitor specific parameters for the RadiusAuthMonitor

Parameter

timeout

retry

authport
acctport

user

password

secret

authtype

nasid

Examples

Description Required Default value
Time in milliseconds to wait optional 5000

for the RADIUS service.

This is a placeholder for the optional 0

second optional monitor
parameter description.

RADIUS authentication port. optional 1812
RADIUS accounting port. optional 1813
Username to test the optional OpenhMS
authentication

Password to test the optional OpenNMS
authentication

The RADIUS shared secret optional secret
used for communication

between the client/NAS

and the RADIUS server.

RADIUS authentication type. optional pap

The following authentication
types are supported:

chap, pap, mschapv1, mschapv2,
eapmd5, eapmschapv?2

The Network Access Server optional opennms
identifier

originating the Access-

Request.

Example configuration how to configure the monitor in the poller-configuration.xml.

<service name="Radius-Authentication" interval="300000" user-defined="false" status="on">

<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
</service>

key="retry" value="3" />

key="timeout" value="3000" />

key="user" value="John Doe" />

key="password" value="hello" />

key="secret" value="radiuspassword" />

key="rrd-repository" value="/var/lib/opennms/rrd/response" />
key="ds-name" value="radiusauth" />

<monitor service="Radius-Authentication" class-name=

"org.opennms.

79

protocols.radius.monitor.RadiusAuthMonitor" />

http://freeradius.org/rfc/rfc2865.html#NAS-Identifier
http://freeradius.org/rfc/rfc2865.html#NAS-Identifier

2.1.35. SmbMonitor

This monitor is used to test the NetBIOS over TCP/IP name resolution in Microsoft Windows environments. The monitor
tries to retrieve a NetBIOS name for the IP address of the interface. Name services for NetBIOS in Microsoft Windows are
provided on port 137/UDP or 137/TCP.

The service uses the IP address of the interface, where the monitor is assigned to. The service is up if for the given IP
address a NetBIOS name is registered and can be resolved.

For troubleshooting see the usage of the Microsoft Windows command line tool nbtstat or on Linux nmblookup.

Microsoft deprecated the usage of NetBIOS. Since Windows Server 2000 DNS is used as the
default name resolution.

WARNING

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SmbMonitor

Remote Enabled false

Configuration and Usage

Table 49. Monitor specific parameters for the SmbMonitor
Parameter Description Required Default value

retry Number of attempts to geta required -
valid response

timeout Timeout in milliseconds for required -
TCP connection
establishment
do-node-status Try to get the NetBIOS node optional true
status type for the given
address
Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

<service name="SMB" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="timeout" value="3000"/>

</service>

<monitor service="SMB" class-name="org.opennms.netmgt.poller.monitors.SmbMonitor"/>

2.1.36. SnmpMonitor

The SNMP monitor gives a generic possibility to monitor states and results from SNMP agents. This monitor has two basic

operation modes:
 Test the response value of one specific OID (scalar object identifier);

» Test multiple values in a whole table.

80

To decide which mode should be used, the walk and match-all parameters are used.

See the Operating mode selection'' and Monitor specific parameters for the SnmpMonitor" tables below for more

information about these operation modes.

Table 50. Operating mode selection

walk match-all Operating mode
true true tabular, all values must match
false tabular, any value must match
count specifies that the value of at least

minimum and at most
maximum objects encountered in

false true scalar
false scalar
count tabular, between minimum and maximum

values must match

WARNING This monitor can’t be used on the OpenNMS Remote Poller. It is currently not possible for the
Remote Poller to have access to the SNMP configuration of a central OpenNMS.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SnmpMonitor

Remote Enabled false

Configuration and Usage

Table 51. Monitor specific parameters for the SnmpMonitor
Parameter Description Required Default value

hex Specifies that the value optional false
monitored should be
compared against its
hexadecimal representation.
Useful when the monitored
value is a string containing
non-printable characters.

81

Parameter

match-all

maximum

minimum

oid

Description

Can be set to:

count: specifies that the value
of at least minimum and at
most maximum objects
encountered in

the walk must match the
criteria specified by operand
and operator.

true and walk is set to true:
specifies that the value of
every object encountered in
the walk must match the
criteria specified by the
operand and operator
parameters.

false and walk is set to true:
specifies that the value of
any object encountered in
the walk must match the
criteria specified by the
operand and operator
parameters.

Valid only when match-all is
set to count, otherwise
ignored. Should be used in
conjunction

with the minimum parameter.
Specifies that the value of at
most maximum objects
encountered in the walk
must meet the criteria
specified by the operand and
operator

parameters.

Valid only when match-all is
set to count, otherwise
ignored. Should be used in
conjunction

with the maximum parameter.
Specifies that the value of at
least minimum objects
encountered in the walk
must meet the criteria
specified by the operand and
operator

parameters.

The object identifier of the
MIB object to monitor.

If no other parameters are
present, the monitor asserts
that the agent’s response for
this

object must include a valid
value (as opposed to an
error, no-such-name, or end-
of-view

condition) that is non-null.

Required

optional

optional

optional

optional

Default value

true

.1.3.6.1.2.1.1.2.0 (SNMPv2-
MIB::SysObjectID)

82

Parameter

operand

83

Description Required

The value to be compared optional
against the observed value of

the monitored object.

Note: Comparison will

always succeed if either the

operand or operator

parameter isn’t set

and the monitored value is

non-null.

Default value

Parameter

operator

port

Description Required

The operator to be used for optional
comparing the monitored

object against the operand

parameter.

Must be one of the following

symbolic operators:

&1t; (<): Less than. Both
operand and observed object
value must be numeric.

> (>): Greater than. Both
operand and observed object
value must be numeric.

&1t;=():Less than or equal
to. Both operand and
observed object value must
be numeric.

> = (>=): Greater than or
equal to. Both operand and
observed object value must
be numeric.

=: Equal to. Applied in
numeric context if both
operand and observed object
value are numeric,

otherwise in string context as
a case-sensitive exact match.

I=: Not equal to. Applied in
numeric context if both
operand and observed object
value are

numeric, otherwise in string
context as a case-sensitive
exact match.

~: Regular expression match.
Always applied in string
context.

Note: Comparison will
always succeed if either the
operand or operator
parameter isn’t set

and the monitored value is
non-null.

Keep in mind that you need
to escape all < and >
characters as XML entities
(&1t; and >

respectively)

Destination port where the optional
SNMP requests shall be sent.

Default value

from snmp-config.xml

84

Parameter

reason-template

retry

retries

timeout

walk

Description

A user-provided template

used for the monitor’s reason

code if the service is
unvailable.

Defaults to a reasonable
value if unset.

See below for an explanation
of the possible template
parameters.

Number of polls to attempt.

Deprecated Same as retry.
Parameter retry takes
precedence if both are set.

Timeout in milliseconds for
retrieving the object’s value.

false: Sets the monitor to
poll for a scalar object unless
if the match-all parameter is
set

to count, in which case the
match-all parameter takes
precedence.

true: Sets the monitor to poll
for a tabular object where
the match-all parameter
defines how

the tabular object’s values
must match the criteria
defined by the operator and
operand

parameters. See also the
match-all, minimum, and
maximum parameters.

Required

optional

optional

optional

optional

optional false

Table 52. Variables which can be used in the reason-template parameter

Variable
${hex}
${ipaddr}
${matchAll}

${matchCount}

${maximum}
${minimum}
${observedValue}
${oid}
${operand}
${operator}

${port}

85

Description
Value of the hex parameter.
IP address polled.

Value of the match-all parameter.

When match-all is set to count, contains the number of

matching instances encountered.
Value of the maximum parameter.

Value of the minimum paramater.

Polled value that made the monitor succeed or fail.

Value of the oid parameter.
Value of the operand parameter.
Value of the operator parameter.

Value of the port parameter.

Default value

depends on operation mode

from snmp-config.xml

from snmp-config.xml

from snmp-config.xml

Variable Description

${retry} Value of the retry parameter.
${timeout} Value of the timeout parameter.
${walk} Value of the walk parameter.

Example for monitoring scalar object

As a working example we want to monitor the thermal system fan status which is provided as a scalar object ID.

cpgHeThermalSystemFanStatus .1.3.6.1.4.1.232.6.2.6.4.0

The manufacturer MIB gives the following information:
Description of the cpqHeThermalSystemFanStatus from CPQHLTH-MIB

SYNTAX INTEGER {

other (1),
ok (2),
degraded (3),
failed (4)
}
ACCESS read-only
DESCRIPTION

"The status of the fan(s) in the system.

This value will be one of the following:
other(1)
Fan status detection is not supported by this system or driver.

ok(2)
A1l fans are operating properly.

degraded(3)
A non-required fan is not operating properly.

failed(4)
A required fan is not operating properly.

If the cpqHeThermalDegradedAction is set to shutdown(3) the
system will be shutdown if the failed(4) condition occurs."

The SnmpMonitor is configured to test if the fan status returns ok(2). If so, the service is marked as up. Any other value

indicates a problem with the thermal fan status and marks the service down.

86

http://h18013.www1.hp.com/products/servers/management/hpsim/mibkit.html

Example SnmpMonitor as HP InsightManager fan monitor in poller-configuration.xml

<service name="HP-Insight-Fan-System" interval="300000" user-defined="false" status="on">
<parameter key="o0id" value=".1.3.6.1.4.1.232.6.2.6.4.0"/><1>

<parameter key="operator" value="="/><2>

<parameter key="operand" value="2"/><3>

<parameter key="reason-template" value="System fan status is not ok. The state should be
ok(${operand}) the observed value is ${observedValue}. Please check your HP Insight Manager. Syntax:
other(1), ok(2), degraded(3), failed(4)"/><4>
</service>

<monitor service="HP-Insight-Fan-System" class-name="org.opennms.netmgt.poller.monitors.SnmpMonitor" />

@ Scalar object ID to test
@ Operator for testing the response value
® Integer 2 as operand for the test

@ Encode MIB status in the reason code to give more detailed information if the service goes down

Example test SNMP table with all matching values

The second mode shows how to monitor values of a whole SNMP table. As a practical use case the status of a set of physical

drives is monitored. This example configuration shows the status monitoring from the CPQIDA-MIB.

We use as a scalar object id the physical drive status given by the following tabular OID:

cpgDaPhyDrvStatus .1.3.6.1.4.1.232.3.2.5.1.1.6

Description of the cpqgDaPhyDrvStatus object id from CPQIDA-MIB

SYNTAX INTEGER {

other (M,
ok (2),
failed 3),
predictiveFailure (4)
3
ACCESS read-only
DESCRIPTION

Physical Drive Status.
This shows the status of the physical drive.
The following values are valid for the physical drive status:

other (1)
Indicates that the instrument agent does not recognize
the drive. You may need to upgrade your instrument agent
and/or driver software.

ok (2)
Indicates the drive is functioning properly.

failed (3)
Indicates that the drive is no longer operating and
should be replaced.

predictiveFailure(4)

Indicates that the drive has a predictive failure error and
should be replaced.

87

http://h18013.www1.hp.com/products/servers/management/hpsim/mibkit.html

The configuration in our monitor will test all physical drives for status ok(2).

Example SnmpMonitor as HP Insight physical drive monitor in poller-configuration.xml

<service name="HP-Insight-Drive-Physical" interval="300000" user-defined="false" status="on">

<parameter key="o0id" value=".1.3.6.1.4.1.232.3.2.5.1.1.6"/><1>

<parameter key="walk" value="true"/><2>

<parameter key="operator" value="="/><3>

<parameter key="operand" value="2"/><4>

<parameter key="match-all" value="true"/><5>

<parameter key="reason-template" value="One or more physical drives are not ok. The state should be
ok(${operand}) the observed value is ${observedValue}. Please check your HP Insight Manager. Syntax:
other(1), ok(2), failed(3), predictiveFailure(4), erasing(5), eraseDone(6), eraseQueued(7)"/><6>
</service>

<monitor service="HP-Insight-Drive-Physical" class-name="org.opennms.netmgt.poller.monitors.SnmpMonitor'
/>

@ OID for SNMP table with all physical drive states

@ Enable walk mode to test every entry in the table against the test criteria
® Test operator for integer

@ Integer 2 as operand for the test

® Test in walk mode has to be passed for every entry in the table

® Encode MIB status in the reason code to give more detailed information if the service goes down

Example test SNMP table with all matching values

This example shows how to use the SnmpMonitor to test if the number of static routes are within a given boundary. The
service is marked as up if at least 3 and at maxium 10 static routes are set on a network device. This status can be
monitored by polling the table ipRouteProto from the RFC1213-MIB2.

ipRouteProto 1.3.6.1.2.1.4.21.1.9

The MIB description gives us the following information:

88

http://www.ietf.org/rfc/rfc1213.txt

SYNTAX INTEGER {
other(1),
local(2),
netmgmt(3),
icmp(4),
egp(5),
g99p(6),
hello(7),
rip(8),
is-is(9),
es-is(10),
ciscolgrp(11),
bbnSpfIgp(12),
ospf(13),
bgp(14)}
}
ACCESS read-only
DESCRIPTION
"The routing mechanism via which this route was learned.
Inclusion of values for gateway routing protocols is not
intended to imply that hosts should support those protocols."

To monitor only local routes, the test should be applied only on entries in the ipRouteProto table with value 2. The number

of entries in the whole ipRouteProto table has to be counted and the boundaries on the number has to be applied.
Example SnmpMonitor used to test if the number of local static route entries are between 3 or 10.

<service name="All-Static-Routes" interval="300000" user-defined="false" status="on">
<parameter key="o0id" value=".1.3.6.1.2.1.4.21.1.9" /><1>

<parameter key="walk" value="true" /><2>

<parameter key="operator" value="=" /><3>

<parameter key="operand" value="2" /><4>

<parameter key="match-all" value="count" /><5>

<parameter key="minimum" value="3" /><6>

<parameter key="maximum" value="10" /><7>

</service>

<monitor service="All-Static-Routes" class-name="org.opennms.netmgt.poller.monitors.SnmpMonitor" />

OID for SNMP table ipRouteProto

Enable walk mode to test every entry in the table against the test criteria

Test operator for integer

Integer 2 as operand for testing local route entries

Test in walk mode has is set to count to get the number of entries in the table regarding operator and operand

Lower count boundary set to 3

Q ® © ® © ® ©

High count boundary is set to 10

2.1.37. SshMonitor

The SSH monitor tests the availability of a SSH service. During the poll an attempt is made to connect on the specified port.
If the connection request is successful, then the service is considered up. Optionaly, the banner line generated by the

service may be parsed and compared against a pattern before the service is considered up.

89

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SshMonitor

Remote Enabled true

Configuration and Usage

Table 53. Monitor specific parameters for the SshMonitor

Parameter Description Required Default value
banner Regular expression to be optional -

matched against the service’s

banner.
client-banner The client banner that Optional SSH-1. 99-0penNMS_1 .5

OpenNMS will use to identify
itself on the service.

match Regular expression to be optional -
matched against the service’s
banner.

Deprecated, please use the
banner parameter instead.

Note that this parameter
takes precedence over the
banner parameter, though.

port TCP port to which SSH optional 22
connection shall be tried.

retry Number of attempts to optional 0
establish the SSH
connnection.

timeout Timeout in milliseconds for optional 3000
SSH connection
establishment.

Examples

<service name="SSH" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="1"/>
<parameter key="banner" value="SSH"/>
<parameter key="client-banner" value="OpenNMS poller"/>
<parameter key="timeout" value="5000"/>
<parameter key="rrd-repository" value="/var/lib/opennms/rrd/response"/>
<parameter key="rrd-base-name" value="ssh"/>
<parameter key="ds-name" value="ssh"/>
</service>
<monitor service="SSH" class-name="org.opennms.netmgt.poller.monitors.SshMonitor"/>

2.1.38. SSLCertMonitor

This monitor is used to test if a SSL certificate presented by a remote network server are valid. A certificate is invalid if its
initial time is prior to the current time, or if the current time is prior to 7 days (configurable) before the expiration time.
The monitor only supports SSL on the socket and does not support a higher level protocol above it. Additionally, it does not

support Server Name Indication (SNI) and so is unable to validate different certificates if they would be presented on the

90

same connection.

You can simulate the behavior by running a command like this:

echo | openssl s_client -connect <site>:<port> 2>/dev/null | openssl x509 -noout -dates

The output shows you the time range a certificate is valid:

notBefore=Dec 24 14:11:34 2013 GMT
notAfter=Dec 25 10:37:40 2014 GMT

You can configure a threshold in days applied on the notAfter date.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SSLCertMonitor

Remote Enabled true

Configuration and Usage

Table 54. Monitor specific parameters for the SSLCertMonitor
Parameter Description Required Default value

port TCP port for the service with required -1
SSL certificate.

retry Number of attempts to get optional 0
the certificate state

timeout Time in milliseconds to wait optional 3000
before next attempt.

days Number of days before the optional 7
certificate expires that we
mark the service as failed.

The monitor has no support for communicating on other protocol layers above the SSL session layer.
WARNING It is not able to send a Host header for HTTPS, or issue a STARTTLS command for IMAP, POP3, SMTP,
FTP, XMPP, LDAP, or NNTP.

Examples

The following example shows how to monitor SSL certificates on services like IMAPS, SMTPS and HTTPS. If the certificates
expire within 30 days the service goes down and indicates this issue in the reason of the monitor. In this example the
monitoring interval is reduced to test the certificate every 2 hours (7,200,000 ms). Configuration in poller-

configuration.xml is as the following:

91

<service name="SSL-Cert-IMAPS-993" interval="7200000"
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="port" value="993"/>
<parameter key="days" value="30"/>

</service>

<service name="SSL-Cert-SMTPS-465" interval="7200000"
<parameter key="retry" value="2"/>
<parameter key="timeout" value="2000"/>
<parameter key="port" value="465"/>
<parameter key="days" value="30"/>

</service>

<service name="SSL-Cert-HTTPS-443" interval="7200000"
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>
<parameter key="port" value="443"/>
<parameter key="days" value="30"/>

</service>

<monitor service="SSL-Cert-IMAPS-993" class-name="org
<monitor service="SSL-Cert-SMTPS-465" class-name="org

2.1.39. StrafePingMonitor

user-defined="false" status="on">

user-defined="false" status="on">

user-defined="false" status="on">

.opennms.netmgt.poller.monitors.SSLCertMonitor" />
.opennms.netmgt.poller.monitors.SSLCertMonitor" />
<monitor service="SSL-Cert-HTTPS-443" class-name="org.

opennms.netmgt.poller.monitors.SSLCertMonitor" />

This monitor is used to monitor packet delay variation to a specific endpoint using ICMP. The main use case is to monitor a

WAN end point and visualize packet loss and ICMP packet round trip time deviation. The StrafePingMonitor performs

multiple ICMP echo requests (ping) and stores the response-time of each as well as the packet loss, in a RRD file. Credit is

due to Tobias Oetiker, as this graphing feature is an adaptation of the SmokePing tool that he developed.

StrafePing Response Time

Shade represents the
response time deviation
from the 20 ICMP probes

Color means
packet loss

Seconds

Week 26

Week 27 Week 28 Week 29

Median RTT (3.0ms avg) @0 @ 1/20 W 2/20 O3/20 W4/20 m10/20 m 19/20
Packet Loss: 0,00 % average 0,00 % maximum 0,00 % current

Week 30

Figure 12. Visualization of a graph from the StrafePingMonitor

Monitor facts

Class Name

Remote Enabled

Configuration and Usage

Monitor specific parameters for the StrafePingMonitor

Parameter Description

timeout Time in milliseconds to wait

before assuming that a
packet has not responded

org.opennms.netmgt.poller.monitors.StrafePingMonitor

false
Required Default value
optional 800

92

http://en.wikipedia.org/wiki/Packet_delay_variation
http://oss.oetiker.ch/smokeping/

Parameter Description Required Default value

retry The number of retries to optional 2
attempt when a packet fails
to respond in the given
timeout

ping-count The number of pings to required 20
attempt each interval

failure-ping-count The number of pings that required 20
need to fail for the service to
be considered down

wait-interval Time in milliseconds to wait required 50
between each ICMP echo-
request packet

rrd-repository The location to write RRD required $OPENNMS_HOME/share/rrd/resp
data. Generally, you will not onse
want to change this from
default

rrd-base-name The name of the RRD fileto required strafeping
write (minus the extension,
.rrd or .jrb)

Examples

The StrafePingMonitor is typically used on WAN connections and not activated for every ICMP enabled device in your
network. Further this monitor is much I/O heavier than just a simple RRD graph with a single ICMP response time
measurement. By default you can find a separate poller package in the 'poller-configuration.xml' called strafer. Configure

the include-range or a filter to enable monitoring for devices with the service StrafePing.
TIP Don’t forget to assign the service StrafePing on the IP interface to be activated.

The following example enables the monitoring for the service StrafePing on IP interfaces in the range 10.0.0.1 until

10.0.0.20. Additionally the Nodes have to be in a surveillance category named Latency.

93

<package name="strafer" >
<filter>categoryName == 'Latency'</filter>
<include-range begin="10.0.0.1" end="10.0.0.20"/>
<rrd step="300">
<rra>RRA:AVERAGE:0.5:1:2016</rra>
<rra>RRA:AVERAGE:0.5:12:1488</rra>
<rra>RRA:AVERAGE:0.5:288:366</rra>
<rra>RRA:MAX:0.5:288:366</rra>
<rra>RRA:MIN:0.5:288:366</rra>
</rrd>
<service name="StrafePing" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="0"/>
<parameter key="timeout" value="3000"/>
<parameter key="ping-count" value="20"/>
<parameter key="failure-ping-count" value="20"/>
<parameter key="wait-interval" value="50"/>
<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>
<parameter key="rrd-base-name" value="strafeping"/>
</service>
<downtime interval="30000" begin="0" end="300000"/>
<downtime interval="300000" begin="300000" end="43200000"/>
<downtime interval="600000" begqin="43200000" end="432000000"/>
<downtime begin="432000000" delete="true"/>
</package>
<monitor service="StrafePing" class-name="org.opennms.netmgt.poller.monitors.StrafePingMonitor"/>

2.1.40. TcpMonitor

This monitor is used to test IP Layer 4 connectivity using TCP. The monitor establishes an TCP connection to a specific port.
To test the availability of the service, the greetings banner of the application is evaluated. The behavior is similar to a

simple test using the telnet command as shown in the example.

Simulating behavior of the monitor with telnet

root@vagrant:~# telnet 127.0.0.1 22

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is 'A]'.
SSH-2.0-0penSSH_6.6.1p1 Ubuntu-2ubuntu2 <1>

@ Service greeting banner

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.TcpMonitor

Remote Enabled true

Configuration and Usage

Table 55. Monitor specific parameters for the TcpMonitor

Parameter Description Required Default value
port TCP port of the application. required -1
retry Number of retries before the optional 0

service is marked as down.

94

Parameter Description Required Default value

timeout Time in milliseconds to wait optional 3000
for the TCP service.

banner Evaluation of the service optional
connection banner with
regular expression. By
default any banner result
is valid.

Examples

This example shows to test if the ICA service is available on TCP port 1494. The test evaluates the connection banner

starting with ICA.

<service name="TCP-Citrix-ICA" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="0" />
<parameter key="banner" value="ICA" />
<parameter key="port" value="1494" />
<parameter key="timeout" value="3000" />
<parameter key="rrd-repository" value="/var/1ib/opennms/rrd/response" />
<parameter key="rrd-base-name" value="tcpCitrixIca" />
<parameter key="ds-name" value="tcpCitrixIca" />
</service>

<monitor service="TCP-Citrix-ICA" class-name="org.opennms.netmgt.poller.monitors.TcpMonitor" />

2.1.41. SystemExecuteMonitor

If it is required to execute a system call or run a script to determine a service status, the SystemExecuteMonitor can be
used. It is calling a script or system command, if required it provides additional arguments to the call. To determine the
status of the service the SystemExecuteMonitor can rely on 0 or a non-0 exit code of system call. As an alternative, the
output of the system call can be matched against a banner. If the banner is part of the output the status is interpreted as up.

If the banner is not available in the output the status is determined as down.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.SystemExecuteMonitor

Remote Enabled true

Configuration and Usage

Table 56. Monitor specific parameters for the SystemExecuteMonitor

Parameter Description Required Default value
script The system-call to execute. required -
args The arguments to hand over optional -

to the system-call. It supports
variable replacement, see
below.

95

https://en.wikipedia.org/wiki/Independent_Computing_Architecture

Parameter Description Required Default value

banner A string that is match against optional -
the output of the system-call.
If the output contains the
banner, the
service is determined as UP.

The parameter args supports variable replacement for the following set of variables.

Table 57. Variables which can be used in the configuration

Variable Description

${timeout} Timeout in milliseconds, based on config of the service.

${timeoutsec} Timeout in seconds, based on config of the service.

${retry} Amount of retries based on config of the service.

${svcname} Service name based on the config of the service.

${ipaddr} IP-address of the interface the service is bound to.

${nodeid} Nodeid of the node the monitor is associated to.

${nodelabel} Nodelabel of the node the monitor is associated to.
Examples

<parameter key="args" value="-i ${ipaddr} -t ${timeout}"/>
<parameter key="args" value="http://${nodelabel}/${svcname}/static"/>

SystemExecuteMonitor vs GpMonitor

The SystemExecuteMonitor is the successor of the GpMonitor. The main differences are:
 Variable replacement for the parameter args
» There are no fixed arguments handed to the system-call
* The SystemExecuteMonitor supports RemotePoller deployment

To migrate services from the GpMonitor to the SystemExecuteMonitor it is required to alter the parameter args. To match
the arguments called hoption for the hostAddress and toption for the timeoutInSeconds. The args string that matches the
GpMonitor call looks like this:

<parameter key="args" value="--hostname ${ipaddr} --timeout ${timeoutsec}" />

To migrate the GpMonitor parameters hoption and toption just replace the --hostname and --timeout directly in the args key.

2.1.42. VmwareCimMonitor

This monitor is part of the VMware integration provided in Provisiond. The monitor is specialized to test the health status
provided from all Host System (host) sensor data.

IMPORTANT This monitor is only executed if the host is in power state on.

96

This monitor requires to import hosts with Provisiond and the VMware import. OpenNMS
requires network access to VMware vCenter and the hosts. To get the sensor data the

IMPORTANT credentials from vmware-config.xml for the responsible vCenter is used. The following asset
fields are filled from Provisiond and is provided by VMware import feature: VMware

Management Server, VMware Managed Entity Type and the foreignld which contains an internal
VMware vCenter Identifier.

The global health status is evaluated by testing all available host sensors and evaluating the state of each sensor. A sensor
state could be represented as the following:

» Unknown(0)

* OK(5)

* Degraded/Warning(10)

* Minor failure(15)

* Major failure(20)

* Critical failure(25)

* Non-recoverable error(30)

The service is up if all sensors have the status OK(5). If any sensor gives another status then OK(5) the service is marked as

down. The monitor error reason contains a list of all sensors which not returned status OK(5).

In case of using Distributed Power Management the standBy state forces a service down. The health

NOTE status is gathrered with a direct connection to the host and in stand by this connection is unavailable and
the service is down. To deal with stand by states, the configuration ignoreStandBy can be used. In

case of a stand by state, the service is considered as up.

state can be changed see the ignoreStandBy configuration parameter.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.VmwareCimMonitor

Remote Enabled false

Configuration and Usage

Table 58. Monitor specific parameters for the VmwareCimMonitor
Parameter Description Required Default value

retry Number of retries before the optional 0
service is marked as down.

timeout Time in milliseconds to wait optional 3000
collecting the CIM sensor
data.

ignoreStandBy Treat power state standBy as optional false
up.

97

http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf

Examples

Some example configuration how to configure the monitor in the poller-configuration.xml.

<service name="VMwareCim-HostSystem" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>

</service>

<monitor service="VMwareCim-HostSystem" class-name="org.opennms.netmgt.poller.monitors.VmwareCimMonitor"/>

2.1.43. VmwareMonitor

This monitor is part of the VMware integration provided in Provisiond and test the power state of a virtual machine (VM)
or a host system (host). If the power state of a VM or host is poweredOn the service is up. The state off the service on the VM
or Host is marked as down. By default standBy is also considered as down. In case of using Distributed Power Management

the standBy state can be changed see the ignoreStandBy configuration parameter.

The information for the status of a virtual machine is collected from the responsible VMware vCenter
using the credentials from the vmware-config.xml. It is also required to get specific asset fields
CAUTION assigned to an imported virtual machine and host system. The following asset fields are
required, which are populated by the VMware integration in Provisiond: VMware Management Server,
VMware Managed Entity Type and the foreignld which contains an internal VMware vCenter Identifier.

Monitor facts
Class Name org.opennms.netmgt.poller.monitors.VmwareMonitor

Remote Enabled false

Configuration and Usage

Table 59. Monitor specific parameters for the VmwareMonitor
Parameter Description Required Default value

retry Number of retries before the optional 0
service is marked as down.

timeout Time in milliseconds to wait optional 3000
for the vCenter to get the
power state information.

ignoreStandBy Treat power state standBy as optional false
up.
Examples
Some example configuration how to configure the monitor in the poller-configuration.xml.
<service name="VMware-ManagedEntity" interval="300000" user-defined="false" status="on">
<parameter key="retry" value="2"/>
<parameter key="timeout" value="3000"/>

</service>

<monitor service="VMware-ManagedEntity" class-name="org.opennms.netmgt.poller.monitors.VmwareMonitor"/>

98

http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf

2.1.44. Win32ServiceMonitor

The Win32ServiceMonitor enables OpenNMS to monitor the running state of any Windows service. The service status is
monitored using the Microsoft Windows® provided SNMP agent providing the LAN Manager MIB-II. For this reason it is
required the SNMP agent and OpenNMS is correctly configured to allow queries against part of the MIB tree. The status of

the service is monitored by polling the

svSvcOperatingState = 1.3.6.1.4.1.77.1.2.3.1.3

of a given service by the display name.

Monitor facts

Class Name org.opennms.netmgt.poller.monitors.Win32ServiceMonitor

Remote Enabled false

Configuration and Usage

Table 60. Monitor specific parameters for the Win32ServiceMonitor

Parameter Description Required Default value

retry Number of attempts to get required From snmp-config.xml
the service state from SNMP
agent

timeout Time in milliseconds to wait required From snmp-config.xml

for the SNMP result before
next attempt.

service-name The name of the service, this required Server
should be the exact name of
the Windows service to
monitor as it
appears in the Services MSC
snap-in. Short names such as
you might use with net start
will not
work here.

Non-English Windows The service-name is sometime encoded in languages other than English. Like in
NOTE French, the Task Scheduler service is Planificateur de tache. Because of the "a" (non-English character), the
OID value is encoded in hexa (0x50 6C 61 6E 69 66 69 63 61 74 65 75 72 20 64 65 20 74 C3 A2 63 68 65 73).

Troubleshooting

If you’ve created a Win32ServiceMonitor poller and are having difficulties with it not being monitored properly on your

hosts, chances are there is a difference in the name of the service you’ve created, and the actual name in the registry.

For example, I need to monitor a process called Example Service on one of our production servers. I retrieve the Display
name from looking at the service in service manager, and create an entry in the poller-configuration.xml files using the

exact name in the Display name field.

However, what I don’t see is the errant space at the end of the service display name that is revealed when doing the
following:

99

http://technet.microsoft.com/en-us/library/cc977581.aspx

snmpwalk -v 2c¢ -c <communitystring> <hostname> .1.3.6.1.4.1.77.1.2.3.1.1

This provides the critical piece of information I am missing:

i50.3.6.1.4.1.77.1.2.3.1.1.31.83.116.97.102.102.119.97.114.101.32.83.84.65.70.70.86.73.69.87.32.66.97.99.1
07.103.114.111.117.110.100.32 = STRING: "Example Service "

NOTE Note the extra space before the close quote.

The extra space at the end of the name was difficult to notice in the service manager GUI, but is easily visible in the
snmpwalk output. The right way to fix this would be to correct the service Display name field on the server, however, the
intent of this procedure is to recommend verifying the true name using snmpwalk as opposed to relying on the service

manager GUI

Examples

Monitoring the service running state of the Task Scheduler on an English local Microsoft Windows® Server requires at

minimum the following entry in the poller-configuration.xml.

<service name="Windows-Task-Scheduler" interval="300000" user-defined="false" status="on">
<parameter key="service-name" value="Task Scheduler"/>
</service>

<monitor service="Windows-Task-Scheduler" class-name=
"org.opennms.netmgt.poller.monitors.Win32ServiceMonitor"/>

2.1.45. XmpMonitor

The XMP monitor tests for XMP service/agent availability by establishing an XMP session and querying the target agent’s
sysObjectID variable contained in the Core MIB. The service is considered available when the session attempt succeeds and

the agent returns its sysObjectID without error.

Monitor facts
Class Name org.opennms.netmgt.poller.monitors.XmpMonitor

Remote Enabled false

Configuration and Usage

These parameters can be set in the XMP service entry in collectd-configuration.xml and will override settings from xmp-
config.xml. Also, don’t forget to add an entry in response-graph.properties so that response values will be graphed.

Table 61. Monitor specific parameters for the XmpMonitor

Parameter Description Required Default value

timeout Time in milliseconds to wait optional 5000
for a successful session.

authenUser The authenUser parameter optional xmpUser
for use with the XMP session.

100

http://www.opennms.org/wiki/XMP

Parameter

port

mib

object

Examples

Description Required

TCP port to connect to for optional
XMP session establishment

Name of MIB to query optional

Name of MIB object to query optional

Adding entry in collectd-configuration.xml

<service name="XMP" interval="300000" user-defined="false" status="on">

<parameter key="timeout" value="3000"/>

<parameter key="rrd-repository" value="/opt/opennms/share/rrd/response"/>

<parameter key="rrd-base-name" value="xmp"/>
<parameter key="ds-name" value="xmp"/>

</service>

Default value

5270

core

sysObjectID

<monitor service="XMP" class-name="org.opennms.netmgt.poller.monitors.XmpMonitor"/>

Add entry in response-graph.properties

reports=icmp, \
xmp, \

report.xmp.name=XMP

report.xmp.columns=xmp
report.xmp.type=responseTime
report.xmp.command=--title="XMP Response Time" \
--vertical-label="Seconds" \
DEF:rtMills={rrd1}:xmp:AVERAGE \
DEF:minRtMills={rrd1}:xmp:MIN \
DEF:maxRtMills={rrd1}:xmp:MAX \
CDEF:rt=rtMills, 1000,/ \
CDEF:minRt=minRtMills, 1000,/ \
CDEF:maxRt=maxRtMills, 1000,/ \
LINE1:rt#0000ff: "Response Time" \
GPRINT:rt:AVERAGE:" Avg \\: %8.21f %s" \

GPRINT:rt:MIN:"Min
GPRINT:rt:MAX:"Max

101

\\: %8.21F %s" \
\\: %8.21f %s\\n"

Chapter 3. Events

Events are central to the operation of the OpenNMS platform, so it’s critical to have a firm grasp of this topic.

Whenever something in OpenNMS appears to work by magic, it’s probably events working behind
IMPORTANT th ai
e curtain.

3.1. Anatomy of an Event

Events are structured historical records of things that happen in OpenNMS and the nodes, interfaces, and services it

manages. Every event has a number of fixed fields and zero or more parameters.

UEI (Universal Event Identifier)

A string uniquely identifying the event’s type. UEIs are typically formatted in the style of a URI, but the only

requirement is that they start with the string vei..

Event Label

A short, static label summarizing the gist of all instances of this event.

Description

Along-form description describing all instances of this event.

Log Message

A long-form log message describing this event, optionally including expansions of fields and parameters so that the

value is tailored to the event at hand.

Severity

A severity for this event type. Possible values range from (Cleared to Critical.

Event ID

A numeric identifier used to look up a specific event in the OpenNMS system.

Operator Instruction

A set of instructions for an operator to respond appropriately to an event of this type.

Alarm Data

If this field is provided for an event, OpenNMS will create, update, or clear alarms for events of that type according to

the alarm-data specifics. For more about alarms and how they relate to events, see [alarms-introduction].

3.2. Sources of Events
Events may originate within OpenNMS itself or from outside.

Internally-generated events can be the result of the platform’s monitoring and management functions (e.g. a monitored
node becoming totally unavailable results in an event with the UEI uei.opennms.org/nodes/nodeDown) or they may act as

inputs or outputs of housekeeping processes.

Externally-created events can arrive by a variety of mechanisms, including:

102

SNMP Traps

If SNMP-capable devices in the network are configured to send traps to OpenNMS, these traps are transformed into
events according to pre-configured rules. Event definitions are included with OpenNMS for traps from many vendors'

equipment.

Syslog Messages

Syslog messages sent over the network to OpenNMS can be transformed into events according to pre-configured rules.

TL1 Autonomous Messages

Autonomous messages can be retrieved from certain TL1-enabled equipment and transformed into events.

XML-TCP

Any application or script can create custom events in OpenNMS by sending properly-formatted XML data over a TCP
socket.

3.3. The Event Bus

At the heart of OpenNMS lies an event bus. Any OpenNMS component can publish events to the bus, and any component
can subscribe to receive events of interest that have been published on the bus. This publish-subscribe model enables
components to use events as a mechanism to send messages to each other. For example, the provisioning subsystem of
OpenNMS publishes a node-added event whenever a new node is added to the system. Other subsystems with an interest in
new nodes subscribe to the node-added event and automatically receive these events, so they know to start monitoring and
managing the new node if their configuration dictates. The publisher and subscriber components do not need to have any
knowledge of each other, allowing for a clean division of labor and lessening the programming burden to add entirely new

OpenNMS subsystems or modify the behavior of existing ones.

3.4. Events in Action

103

Chapter 4. Provisioning

4.1. Introduction

The introduction of OpenNMS version 1.8 empowers enterprises and services providers like never before with a new
service daemon for maintaining the managed entity inventory in OpenNMS. This new daemon, Provisiond, unifies all
previous entity control mechanisms available in 1.6 (Capsd and the Importer), into a new and improved, massively parallel,
policy based provisioning system. System integrators should note, Provisiond comes complete with a RESTFul Web Service
API for easy integration with external systems such as CRM or external inventory systems as well as an adapter API for

interfacing with other management systems such as configuration management.

OpenNMS 1.0, introduced almost a decade ago now, provided a capabilities scanning daemon, Capsd, as the mechanism for
provisioning managed entities. Capsd, deprecated with the release of 1.8.0, provided a rich automatic provisioning
mechanism that simply required an IP address to seed its algorithm for creating and maintaining the managed entities
(nodes, interfaces, and IP based services). Version 1.2 added and XML-RPC API as a more controlled (directed) strategy for
provisioning services that was mainly used by non telco based service providers (i.e. managed hosting companies). Version
1.6 followed this up with yet another and more advanced mechanism called the Importer service daemon. The Importer
provided large service providers with the ability to strictly control the OpenNMS entity provisioning with an XML based

API for completely defining and controlling the entities where no discovery and service scanning scanning was feasible.

The Importer service improved OpenNMS' scalability for maintaining managed entity databases by an order of magnitude.
This daemon, while very simple in concept and yet extremely powerful and flexible provisioning improvement, has blazed
the trail for Provisiond. The Importer service has been in production for 3 years in service provider networks maintaining

entity counts of more than 50,000 node level entities on a single instances of OpenNMS. It is a rock solid provisioning tool.

Provisiond begins a new era of managed entity provisioning in OpenNMS.

4.2. Concepts

Provisioning is a term that is familiar to service providers (a.k.a. operators, a.k.a. telephone companies) and OSS systems

but not so much in the non OSS enterprises.

Provisiond receives "requests" for adding managed entities via 2 basic mechanisms, the OpenNMS traditional "New
Suspect" event, typically via the Discovery daemon, and the import requisition (XML definition of node entities) typically
via the Provisioning Groups UL If you are familiar with all previous releases of OpenNMS, you will recognize the New
Suspect Event based Discovery to be what was previously the Capsd component of the auto discovery behavior. You will
also recognize the import requisition to be of the Model Importer component of OpenNMS. Provisiond now unifies these

two separate components into a massively parallel advanced policy based provisioning service.

4.2.1. Terminology

The following terms are used with respect to OpenNMS’ provisioning system and are essential for understanding the

material presented in this guide.

Entity

Entities are managed objects in OpenNMS such as Nodes, IP interfaces, SNMP Interfaces, and Services.

Foreign Source and Foreign ID

The Importer service from 1.6 introduced the idea of foreign sources and foreign IDs. The Foreign Source uniquely

104

identifies a provisioning source and is still a basic attribute of importing node entities into OpenNMS. The concept is to
provide an external (foreign) system with a way to uniquely identify itself and any node entities that it is requesting (via a

requisition) to be provisioned into OpenNMS.

The Foreign ID is the unique node ID maintained in foreign system and the foreign source uniquely identifies the external

system in OpenNMS.

OpenNMS uses the combination of the foreign source and foreign ID become the unique foreign key when synchronizing
the set of nodes from each source with the nodes in the OpenNMS DB. This way the foreign system doesn’t have to keep
track of the OpenNMS node IDs that are assigned when a node is first created. This is how Provisiond can decided if a node

entity from an import requisition is new, has been changed, or needs to be deleted.

Foreign Source Definition

Additionally, the foreign source has been extended to also contain specifications for how entities should be discovered and
managed on the nodes from each foreign source. The name of the foreign source has become pervasive within the

provisioning system and is used to simply some of the complexities by weaving this name into:

 the name of the provisioning group in the Web-UI

» the name of the file containing the persisted requisition (as well as the pending requisition if it is in this state)

* the foreign-source attribute value inside the requisition (obviously, but, this is pointed out to indicate that the file name

doesn’t necessarily have to equal the value of this attribute but is highly recommended as an OpenNMS best practice)

¢ the building attribute of the node defined in the requisition (this value is called “site” in the Web-UI and is assigned to
the building column of the node’s asset record by Provisiond and is the default value used in the Site Status View

feature)

Import Requisition

Import requisition is the terminology OpenNMS uses to represent the set of nodes, specified in XML, to be provisioned from
a foreign source into OpenNMS. The requisition schema (XSD) can be found at the following location.

http://xmlns.opennms.org/xsd/config/model-import

Auto Discovery

Auto discovery is the term used by OpenNMS to characterize the automatic provisioning of nodes entities. Currently,
OpenNMS uses an ICMP ping sweep to find IP address on the network. For the IPs that respond and that are not currently
in the DB, OpenNMS generates a new suspect event. When this event is received by Provisiond, it creates a node and it

begins a node scan based on the default foreign source definition.

Directed Discovery

Provisiond takes over for the Model Importer found in version 1.6 which implemented a unique, first of its kind, controlled
mechanism for specifying managed entities directly into OpenNMS from one or more data sources. These data sources
often were in the form of an in-housed developed inventory or stand-alone provisioning system or even a set of element
management systems. Using this mechanism, OpenNMS is directed to add, update, or delete a node entity exactly as

defined by the external source. No discovery process is used for finding more interfaces or services.

Enhanced Directed Discovery

Directed discovery is enhanced with the capability to scan nodes that have been directed nodes for entities (interfaces.

105

http://xmlns.opennms.org/xsd/config/model-import

Policy Based Discovery

The phrase, Policy based Directed Discovery, is a term that represents the latest step in OpenNMS’ provisioning evolution
and best describes the new provisioning architecture now in OpenNMS for maintaining its inventory of managed entities.
This term describes the control that is given over the Provisioning system to OpenNMS users for managing the behavior of
the NMS with respect to the new entities that are being discovered. Current behaviors include persistence, data collection,

service monitoring, and categorization policies.

4.2.2. Addressing Scalability

The explosive growth and density of the IT systems being deployed today to support not traditional IP services is impacting
management systems like never before and is demanding from them tremendous amounts of scalability. The scalability of
a management system is defined by its capacity for maintaining large numbers of managing entities coupled with its

efficiency of managing the entities.

Today, It is not uncommon for OpenNMS deployments to find node entities with tens of thousands of physical interfaces
being reported by SNMP agents due to virtualization (virtual hosts, interfaces, as well as networks). An NMS must be
capable of using the full capacity every resource of its computing platform (hardware and OS) as effectively as possible in
order to manage these environments. The days of writing scripts or single threaded applications will just no longer be able
to do the work required an NMS when dealing with the scalability challenges facing systems and systems administrators

working in this domain.

Parallelization and Non-Blocking I/0

Squeezing out every ounce of power from a management system’s platform (hardware and OS) is absolutely required to
complete all the work of a fully functional NMS such as OpenNMS. Fortunately, the hardware and CPU architecture of a
modern computing platform provides multiple CPUs with multiple cores having instruction sets that include support for
atomic operations. While these very powerful resources are being provided by commodity systems, it makes the
complexity of developing applications to use them vs. not using them, orders of magnitude more complex. However,
because of scalability demands of our complex IT environments, multi-threaded NMS applications are now essential and

this has fully exposed the complex issues of concurrency in software development.

OpenNMS has stepped up to this challenge with its new concurrency strategy. This strategy is based on a technique that
combines the efficiency of parallel (asynchronous) operations (traditionally used by most effectively by single threaded
applications) with the power of a fully current, non-blocking, multi-threaded design. The non-blocking component of this

new concurrency strategy added greater complexity but OpenNMS gained orders of magnitude in increased scalability.

NOTE Java Runtimes, based on the Sun JVM, have provided implementations for processor based atomic
operations and is the basis for OpenNMS’ non-blocking concurrency algorithms.

Provisioning Policies

Just because you can, doesn’t mean you should! Because the massively parallel operations being created for Provisiond
allows tremendous numbers of nodes, interfaces, and services to be very rapidly discovered and persisted, doesn’t mean it
should. A policy API was created for Provisiond that allows implementations to be developed that can be applied to control
the behavior of Provisiond. The 1.8 release includes a set of flexible provisioning policies that control the persistence of

entities and their attributes constrain monitoring behavior.

When nodes are imported or re-scanned, there is, potentially, a set of zero or more provisioning policies that are applied.
The policies are defined in the foreign source’s definition. The policies for an auto-discovered node or nodes from
provisioning groups that don’t have a foreign source definition, are the policies defined in the default foreign source

definition.

106

The Default Foreign Source Definition

Contained in the libraries of the Provisioning service is the "template" or default foreign source. The template stored in the
library is used until the OpenNMS admin user alters the default from the Provisioning Groups WebUI Upon edit, this

template is exported to the OpenNMS etc/ directory with the file name: “default-foreign-source.xml.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2009-10-16T18:04:12.844-05:00"
name="default"
xmlns="http://xmlns.opennms.org/[http://xmlns.opennms.org/xsd/config/foreign-source">
<scan-interval>1d</scan-interval>
<detectors>
<detector class="org.opennms.netmgt.provision.detector.datagram.DnsDetector” name="DNS"/>
<detector class="org.opennms.netmgt.provision.detector.simple.FtpDetector" name="FTP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.HttpDetector" name="HTTP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.HttpsDetector" name="HTTPS"/>
<detector class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector” name="ICMP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.ImapDetector" name="IMAP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.LdapDetector" name="LDAP"/>
<detector class="org.opennms.netmgt.provision.detector.simple.NrpeDetector" name="NRPE"/>
<detector class="org.opennms.netmgt.provision.detector.simple.Pop3Detector" name="POP3"/>
<detector class="org.opennms.netmgt.provision.detector.radius.RadiusAuthDetector" name="Radius"/>
<detector class="org.opennms.netmgt.provision.detector.simple.SmtpDetector" name="SMTP"/>
<detector class="org.opennms.netmgt.provision.detector.snmp.SnmpDetector" name="SNMP"/>
<detector class="org.opennms.netmgt.provision.detector.ssh.SshDetector" name="SSH"/>
</detectors>
<policies/>
</foreign-source>

Default Foreign Source

4.3. Getting Started

An NMS is of no use until it is setup for monitoring and entities are added to the system. OpenNMS installs with a base
configuration with a configuration that is sufficient get service level monitoring and performance management quickly up
and running. As soon as managed entities are provisioned, the base configuration will automatically begin monitoring and

reporting.

Generally speaking, there are two methods of provisioning in OpenNMS: Auto Discovery and Directed Discovery. We’ll start
with Auto Discovery, but first, we should quickly review the configuration of SNMP so that newly discovered devices can be

immediately scanned for entities as well as have reporting and thresholding available.

4.3.1. Provisioning the SNMP Configuration

OpenNMS requires that the SNMP configuration to be properly setup for your network in order to properly understand
Network and Node topology as well as to automatically enabled performance data collection. Network topology is updated
as nodes (a.k.a. devices or hosts) are provisioned. Navigate to the Admin/Configure SNMP Community Names as shown

below.

Provisiond includes an option to add community information in the Single Node provisioning interface.
NOTE This, is equivalent of entering a single IP address in the screen with the convenience of setting the
community string at the same time a node is provisioned. See the Quick Node Add feature below for more

details about this capability.

This screen sets up SNMP within OpenNMS for agents listening on IP addresses 10.1.1.1 through 10.254.254.254. These

107

settings are optimized into the snmp-configuration.xml file. Optimization means that the minimal configuration possible
will be written. Any IP addresses already configured that are eclipsed by this range will be removed. Here is the resulting

configuration.
Sample snmp-config.xml

<?xml version="1.0" encoding="UTF-8"?7>

<snmp-config
xmlns="http://xmlns.opennms.org/xsd/config/snmp[http://xmlns.opennms.org/xsd/config/snmp]"
port="161" retry="3" timeout="800" read-community="public"

version="v1" max-vars-per-pdu="10">
<definition retry="1" timeout="2000"
read-community="public" version="v2c">
<specific>10.12.23.32</specific>
</definition>

</snmp-config>

However, If an IP address is then configured that is within the range, the range will be split into two separate ranges and a
specific entry is added. For example, if a configuration was added through the same UI for the IP: 10.12.23.32 having the

community name public, then the resulting configuration will be:

<?xml version="1.0" encoding="UTF-8"?>
<snmp-config xmlns="http://xmlns.opennms.org/xsd/config/snmp"
port="161"
retry="3"
timeout="800"
read-community="public"
version="v1"
max-vars-per-pdu="10">

<definition retry="1" timeout="2000" read-community="YrusoNoz" version="v2c">
<range begin="10.1.1.1" end="10.12.23.31"/>
<range begin="10.12.23.33" end="10.254.254.254"/>

</definition>

<definition retry="1" timeout="2000" read-community="public" version="v2c">
<specific>10.12.23.32</specific>
</definition>
</snmp-config>

NOTE the bold IP addresses show where the range was split and the specific with community name "public”
was added.

Now, with SNMP configuration provisioned for our 10 network, we are ready to begin adding nodes. Our first example will
be to automatically discovery and add all managed entities (nodes, IP interfaces, SNMP Interfaces, and Monitored IP based
Services). We will then give an example of how to be more directed and deliberate about your discovery by using

Provisioning Groups.

Automatically discovered entities are analyzed, persisted to the relational data store, and then managed based on the

policies defined in the default foreign source definition. This is very similar to the way that entities were handled by Capsd

108

by with finer grained sense of control.

4.3.2. Automatic Discovery

Currently in OpenNMS, the ICMP is used to automatically provision node entities into OpenNMS. This functionality has
been in OpenNMS since is 1.0 release, however, in 1.8, a few of the use cases have been updated with Provisiond’s

replacement of Capsd.

Separation of Concerns

Version 1.8 Provisiond separates what was called Capsd scanning in to 3 distinct phases: entity scanning, service detection,
and node merging. These phases are now managed separately by Provisiond. Immediately following the import of a node
entity, tasks are created for scanning a node to discover the node entity’s interfaces (SNMP and IP). As interfaces are found,

they are persisted and tasks are scheduled for service detection of each IP interface.

For auto discovered nodes, a node merging phase is scheduled. Nodes that have been directly provisioned will not be
included in the node process. Only in the case the 2 where nodes that have been automatically discovered that appear to be

the same node with the node merging phase be activated.

NOTE the use case and redesign of node merging is still an outstanding issue with the 1.8.0 release

4.3.3. Enhanced Directed Discovery

This new form of provisioning first appears in OpenNMS with version 1.8 and the new Provisiond service. It combines the
benefits of the Importer’s strictly controlled methodology of directed provisioning (from version 1.6) with OpenNMS’
robustly flexible auto discovery. Enhanced Directed discovery begins with an enhanced version of the same import
requisition used in directed provisioning and completes with a policy influenced persistence phase that sorts though the

details of all the entities and services found during the entity and service scanning phase.

If you are planning to use this form of provisioning, it important to understand the conceptual details of how Provisiond
manages entities it is directed to provision. This knowledge will enable administrators and systems integrators to better

plan, implement, and resolve any issues involved with this provisioning strategy.

Understanding the Process

There are 3 phases involved with directing entities to be discovered: import, node scan, and service scan. The import phase

also has sub phases: marshal, audit, limited SNMP scan, and re-parent.

Marshal and Audit Phases

It is important to understand that the nodes requisitioned from each foreign source are managed as a complete set. Nodes
defined in a requisition from the foreign source CRM and CMDB, for example, will be managed separately from each other
even if they should contain exactly the same node definitions. To OpenNMS, these are individual entities and they are

managed as a set.

Requisitions are referenced via a URL. Currently, the URL can be specified as one of the following protocols: FILE, HTTP,
HTTPS, and DNS. Each protocol has a protocol handler that is used to stream the XML from a foreign source, i.e.
http://inv.corp.org/import.cgi?customer=acme or file:/opt/opennms/etc/imports/acme.xml. The DNS protocol is a special
handler developed for Provisioning sets of nodes as a foreign-source from a corporate DNS server. See DNS Protocol
Handler for details.

Upon the import request (either on schedule or on demand via an Event) the requisition is marshaled into Java objects for

processing. The nodes defined in the requisition represent what OpenNMS should have as the current set of managed

109

http://inv.corp.org/import.cgi?customer=acme

entities from that foreign source. The audit phase determines for each node defined (or not defined) in the requisition
which are to be processed as an Add, Update, or Delete operation during the Import Phase. This determination is made by
comparing the set foreign IDs of each node in the requisition set with the set of foreign IDs of currently managed entities in
OpenNMS.

The intersection of the IDs from each set will become the Update operations, the extra set of foreign IDs that are in the
requisition become the Add operations, and the extra set of foreign IDs from the managed entities become the Delete

operations. This implies that the foreign IDs from each foreign source must be unique.

Naturally, the first time an import request is processed from a foreign source there will be zero (0) node entities from the
set of nodes currently being managed and each node defined in the requisition will become an Add Operation. If a
requisition is processed with zero (0) node definitions, all the currently managed nodes from that foreign source will

become Delete operations (all the nodes, interfaces, outages, alarms, etc. will be removed from OpenNMS).

When nodes are provisioned using the Provisioning Groups Web-UI, the requisitions are stored on the local file system and
the file protocol handler is used to reference the requisition. Each Provisioning Group is a separate foreign source and
unique foreign IDs are generated by the Web-UI. An MSP might use Provisioning Groups to define the set of nodes to be

managed by customer name where each customer’s set of nodes are maintained in a separate Provisioning Group.

Import Phase

The import phase begins when Provisiond receives a request to import a requisition from a URL. The first step in this phase
is to load the requisition and marshal all the node entities defined in the requisition into Java objects.

If any syntactical or XML structural problems occur in the requisition, the entire import is abandoned and no import

operations are completed.

Once the requisition is marshaled, the requisition nodes are audited against the persisted node entities. The set of
requisitioned nodes are compared with a subset of persisted nodes and this subset is generated from a database query
using the foreign source defined in the requisition. The audit generates one of three operations for each requisition node:
insert, update, delete based on each requisitioned node’s foreign ID. Delete operations are created for any nodes that are
not in the requisition but are in the DB subset, update operations are created for requisition nodes that match a persisted
node from the subset (the intersection), and insert operations are created from the remaining requisition nodes (nodes in

the requisition that are not in the DB subset).

If a requisition node has an interface defined as the Primary SNMP interface, then during the update and insert operations
the node will be scanned for minimal SNMP attribute information. This scan find the required node and SNMP interface

details required for complete SNMP support of the node and only the IP interfaces defined in the requisition.

NOTE this not the same as Provisiond SNMP discovery scan phases: node scan and interface scan.

Node Scan Phase

Where directed discovery leaves off and enhanced directed discovery begins is that after all the operations have
completed, directed discovery is finished and enhanced directed discovery takes off. The requisitioned nodes are
scheduled for node scans where details about the node are discovered and interfaces that were not directly provisioned
are also discovered. All physical (SNMP) and logical (IP) interfaces are discovered and persisted based on any Provisioning
Policies that may have defined for the foreign source associated with the import requisition.

Service Scan (detection) Phase

Additionally, the new Provisiond enhanced directed discovery mechanism follows interface discovery with service
detection on each IP interface entity. This is very similar to the Capsd plugin scanning found in all former releases of

OpenNMS accept that the foreign source definition is used to define what services should be detected on these interfaces

110

found for nodes in the import requisition.

4.4. Import Handlers
4.4.1. File Handler
4.4.2. HTTP Handler

4.4.3. DNS Handler

The new Provisioning service in OpenNMS is continuously improving and adapting to the needs of the community.

One of the most recent enhancements to the system is built upon the very flexible and extensible API of referencing an
import requisition’s location via a URL. Most commonly, these URLs are files on the file system (i.e.
file:/opt/opennms/etc/imports/<my-provisioning-group.xml>) as requisitions created by the Provisioning Groups UL
However, these same requisitions for adding, updating, and deleting nodes (based on the original model importer) can also

come from URLs specifying the HTTP protocol: http://myinventory.server.org/nodes.cgi

Now, using Java’s extensible protocol handling specification, a new protocol handler was created so that a URL can be
specified for requesting a Zone Transfer (AXFR) request from a DNS server. The A records are recorded and used to build an
import requisition. This is handy for organizations that use DNS (possibly coupled with an IP management tool) as the data
base of record for nodes in the network. So, rather than ping sweeping the network or entering the nodes manually into

OpenNMS Provisioning UI, nodes can be managed via 1 or more DNS servers.

The format of the URL for this new protocol handler is: dns://<host>[:portl/<zone>[/<foreign-

source>/][?expression=<regex>]
DNS Import Examples:
Simple

dns://my-dns-server/myzone.com

This URL will import all A records from the host my-dns-server on port 53 (default port) from zone "myzone.com" and since

the foreign source (a.k.a. the provisioning group) is not specified it will default to the specified zone.
Using a Regular Expression Filter

dns://my-dns-server/myzone.com/portland/?expression="por-.*

This URL will import all nodes from the same server and zone but will only manage the nodes in the zone matching the
regular expression "port-.* and will and they will be assigned a unique foreign source (provisioning group) for managing

these nodes as a subset of nodes from within the specified zone.

If your expression requires URL encoding (for example you need to use a ? in the expression) it must be properly encoded.
dns://my-dns-server/myzone.com/portland/?expression="por[0-9]%3F

Currently, the DNS server requires to be setup to allow a zone transfer from the OpenNMS server. It is recommended that a
secondary DNS server is running on OpenNMS and that the OpenNMS server be allowed to request a zone transfer. A quick

way to test if zone transfers are working is:

111

http://myinventory.server.org/nodes.cgi

dig -t AXFR @<dnsServer> <zone>

The configuration of the Provisoning system has moved from a properties file (nodel-importer.properties) to an XML based
configuration container. The configuration is now extensible to allow the definition of 0 or more import requisitions each
with their own cron based schedule for automatic importing from various sources (intended for integration with external

URL such as http and this new dns protocol handler.

A default configuration is provided in the OpenNMS etc/ directory and is called: provisiond-configuration.xml. This default
configuration has an example for scheduling an import from a DNS server running on the localhost requesting nodes from
the zone, localhost and will be imported once per day at the stroke of midnight. Not very practical but is a good example.

<?xml version="1.0" encoding="UTF-8"?>
<provisiond-configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=

"http://xmlns.opennms.org/xsd/config/provisiond-configuration"
foreign-source-dir="/opt/opennms/etc/foreign-sources"
requistion-dir="/opt/opennms/etc/imports"
importThreads="8"
scanThreads="10"
rescanThreads="10"
writeThreads="8" >

<!--http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
Field Name Allowed Values Allowed Special Characters
Seconds 0-59 , - * / Minutes ©0-59 , - * / Hours 0-23 , - * /
Day-of-month1-31, - * 2 / L W C Month1-12 or JAN-DEC, - * /
Day-of-Week1-7 or SUN-SAT, - * 2 / L C # Year (Opt)empty, 1970-2099, - * /

-->

<requisition-def import-name="localhost"
import-url-resource="dns://localhost/localhost">

<cron-schedule>@ @ @ * * ? *</cron-schedule> <!-- daily, at midnight -->
</requisition-def>
</provisiond-configuration>

Like many of the daemon configuration in the 1.7 branch, the configurations are reloadable without having to restart

OpenNMS, using the reloadDaemonConfig uei:

/opt/opennms/bin/send-event.pl
uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName Provisiond'

This means that you don’t have to restart OpenNMS every time you update the configuration.

4.5. Provisioning Examples

Here are a few practical examples of enhanced directed discovery to help with your understanding of this feature.

4.5.1. Basic Provisioning

This example adds three nodes and requires no OpenNMS configuration other than specifying the node entities to be

provisioned and managed in OpenNMS.

112

Defining the Nodes via the Web-UI

Using the Provisioning Groups Web-UI, three nodes are created given a single IP address. Navigate to the Admin Menu and

click Provisioning Groups Menu from the list of Admin options and create the group Bronze.

Clicking the Add New Group button will create the group and will redisplay the page including this new group among the
list of any group(s) that have already been created.

NOTE At this point, the XML structure for holding the new provisioning group (a.k.a. an import requisition) has
been persisted to the '$OPENNMS_ETC/imports/pending' directory.

Clicking the Edit link will bring you to the screen where you can begin the process of defining node entities that will be
imported into OpenNMS. Click the Add Node button will begin the node entity creation process fill in the node label and
click the Save button.

At this point, the provisioning group contains the basic structure of a node entity but it is not complete until the interface(s)
and interface service(s) have been defined. After having clicked the Save button, as we did above presents, in the Web-UI,
the options Add Interface, Add Node Category, and Add Node Asset. Click the Add Interface link to add an interface entity to
the node.

Enter the IP address for this interface entity, a description, and specify the Primary attribute as P (Primary), S (Secondary),
N (Not collected), or C (Collected) and click the save button. Now the node entity has an interface for which services can be
defined for which the Web-UI now presents the Add Service link. Add two services (ICMP, SNMP) via this link.

Now the node entity definition contains all the required elements necessary for importing this requisition into OpenNMS.
At this point, all the interfaces that are required for the node should be added. For example, NAT interfaces should be

specified there are services that they provide because they will not be discovered during the Scan Phase.

Two more node definitions will be added for the benefit of this example.

This set of nodes represents an import requisition for the Bronze provisioning group. As this requisition is being edited via
the WebUI, changes are being persisted into the OpenNMS configuration directory '$OPENNMS_etc/imports/' pending as an
XML file having the name bronze.xml.

The name of the XML file containing the import requisition is the same as the provisioning group name.
NOTE Therefore naming your provisioning group without the use of spaces makes them easier to manage on
the file system.

Click the Done button to return to the Provisioning Groups list screen. The details of the “Bronze” group now indicates that
there are 3 nodes in the requisition and that there are no nodes in the DB from this group (a.k.a. foreign source).
Additionally, you can see that time the requisition was last modified and the time it last imported are given (the time
stamps are stored as attributes inside the requisition and are not the file system time stamps). These details are indicative

of how well the DB represents what is in the requisition.

113

NOTE You can tell that this is a pending requisition for 2 reasons: 1) there are 3 nodes defined and 0 nodes in
the DB, 2) the requisition has been modified since the last import (in this case never).

Import the Nodes

In this example, you see that there are 3 nodes in the pending requisition and 0 in the DB. Click the Import button to submit
the requisition to the provisioning system (what actually happens is that the Web-UI sends an event to the Provisioner

telling it to begin the Import Phase for this group).

NOTE Do not refresh this page to check the values of these details. To refresh the details to verify the import,
click the Provisioning Groups bread crumb item.

You should be able to immediately verify the importation of this provisioning group because the import happens very

quickly. Provisiond has several threads ready for processing the import operations of the nodes defined in this requisition.

A few SNMP packets are sent and received to get the SNMP details of the node and the interfaces defined in the requisition.

Upon receipt of these packets (or not) each node is inserted as a DB transaction.

Following the import of a node with thousands of interfaces, you will be able to refresh the Interface table browser on the
Node page and see that interfaces and services are being discovered and added in the background. This is the discovery

component of directed discovery.

To direct that another node be added from a foreign source (in this example the Bronze Provisioning Group) simply add a
new node definition and re-import. It is important to remember that all the node definitions will be re-imported and the

existing managed nodes will be updated, if necessary.

Changing a Node

To direct changes to an existing node, simply add, change, or delete elements or attributes of the node definition and re-
import. This is a great feature of having directed specific elements of a node in the requisition because that attributes will
simply be changed. For example, to change the IP address of the Primary SNMP interface for the node,
barbrady.opennms.org, just change the requisition and re-import.

Each element in the Web-UI has an associated Edit icon Click this icon to change the IP address for barbrady.opennms.org,

click save, and then Click the Done button.

The Web-UI will return you to the Provisioning Groups screen where you will see that there are the time stamp showing

that the requisition’s last modification is more recent that the last import time.

This provides an indication that the group must be re-imported for the changes made to the requisition to take effect. The
IP Interface will be simply updated and all the required events (messages) will be sent to communicate this change within
OpenNMS.

Deleting a Node

Barbrady has not been behaving, as one might expect, so it is time to remove him from the system. Edit the provisioning

group, click the delete button next to the node barbrady.opennms.org, click the Done button.

114

Click the Import button for the Bronze group and the Barbrady node and its interfaces, services, and any other related data
will be immediately deleted from the OpenNMS system. All the required Events (messages) will be sent by Provisiond to

provide indication to the OpenNMS system that the node Barbrady has been deleted.

Deleting all the Nodes

There is a convenient way to delete all the nodes that have been provided from a specific foreign source. From the main
Admin/Provisioning Groups screen in the Web-UI, click the Delete Nodes button. This button deletes all the nodes defined in
the Bronze requisition. It is very important to note that once this is done, it cannot be undone! Well it can’t be undone from
the Web-UI and can only be undone if you've been good about keeping a backup copy of your '$SOPENMS_ETC/' directory
tree. If you’ve made a mistake, before you re-import the requisition, restore the Bronze.xml requisition from your backup
copy to the '$OPENNMS_ETC/imports' directory.

Clicking the Import button will cause the Audit Phase of Provisiond to determine that all the nodes from the Bronze group
(foreign source) should be deleted from the DB and will create Delete operations. At this point, if you are satisfied that the
nodes have been deleted and that you will no longer require nodes to be defined in this Group, you will see that the Delete
Nodes button has now changed to the Delete Group button. The Delete Group button is displayed when there are no nodes

entities from that group (foreign source) in OpenNMS.

When no node entities from the group exist in OpenNMS, then the Delete Group button is displayed.

4.5.2. Advanced Provisioning Example

In the previous example, we provisioned 3 nodes and let Provisiond complete all of its import phases using a default

foreign source definition. Each Provisioning Group can have a separate foreign source definition that controls:
* The rescan interval
* The services to be detected
* The policies to be applied

This example will demonstrate how to create a foreign source definition and how it is used to control the behavior of

Provisiond when importing a Provisioning Group/foreign source requisition.

First let’s simply provision the node and let the default foreign source definition apply.

Following the import, All the IP and SNMP interfaces, in addition to the interface specified in the requisition, have been
discovered and added to the node entity. The default foreign source definition has no polices for controlling which

interfaces that are discovered either get persisted or managed by OpenNMS.

Service Detection

As IP interfaces are found during the node scan process, service detection tasks are scheduled for each IP interface. The
service detections defined in the foreign source determines which services are to be detected and how (i.e. the values of the

parameters that parameters control how the service is detected, port, timeout, etc.).

115

Applying a New Foreign Source Definition

This example node has been provisioned using the Default foreign source definition. By navigating to the Provisioning
Groups screen in the OpenNMS Web-UI and clicking the Edit Foreign Source link of a group, you can create a new foreign
source definition that defines service detection and policies. The policies determine entity persistence and/or set attributes

on the discovered entities that control OpenNMS’ management behaviors.

In this UL, new Detectors can be added, changed, and removed. For this example, we will remove detection of all services
accept ICMP and DNS, change the timeout of ICMP detection, and a new Service detection for OpenNMS Web-UI.

Click the Done button and re-import the NMS Provisioning Group. During this and any subsequent re-imports or re- scans,
the OpenNMS detector will be active, and the detectors that have been removed will no longer test for the related services
for the interfaces on nodes managed in the provisioning group (requisition), however, the currently detected services will

not be removed. There are 2 ways to delete the previously detected services:
1. Delete the node in the provisioning group, re-import, define it again, and finally re-import again

2. Use the ReST API to delete unwanted services. Use this command to remove each unwanted service from each

interface, iteratively:

curl -X DELETE -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/nodes/6/ipinterfaces/172.16.1.1/services/DNS

There is a sneaky way to do #1. Edit the provisioning group and just change the foreign ID. That will make
TIP Provisiond think that a node was deleted and a new node was added in the same requisition! Use this hint

with caution and an full understanding of the impact of deleting an existing node.

Provisioning with Policies

The Policy API in Provisiond allow you to control the persistence of discovered IP and SNMP Interface entities and Node

Categories during the Scan phase.

The Matching IP Interface policy controls whether discovered I interfaces are to be persisted and if they are to be persisted,

whether or not they will be forced to be Managed or Unmanaged.

Continuing with this example Provisioning Group, we are going to define a few policies that:
a. Prevent discovered 10 network addresses from being persisted
b. Force 192.168 network addresses to be unmanaged

From the foreign source definition screen, click the Add Policy button and you the definition of a new policy will begin
with a field for naming the policy and a drop down list of the currently installed policies. Name the policy no10s, make sure
that the Match IP Interface policy is specified in the class list and click the Save button. This action will automatically add all
the parameters required for the policy.

The two required parameters for this policy are action and matchBehavior.

The DO_NOT _PERSIST action does just what it indicates, it prevents discovered IP interface entities from being added to

OpenNMS when the matchBehavior is satisfied. The Manage and UnManage values for this action allow the IP interface

116

entity to be persisted by control whether or not that interface should be managed by OpenNMS.

The matchBehavior action is a boolean control that determines how the optional parameters will be evaluated. Setting this
parameter’s value to ALL PARAMETERS causes Provisiond to evaluate each optional parameter with boolean AND logic
and the value ANY_ PARAMETERS will cause OR logic to be applied.

Now we will add one of the optional parameters to filter the 10 network addresses. The Matching IP Interface policy
supports two additional parameters, hostName and ipAddress. Click the Add Parameter link and choose ipAddress as the
key. The value for either of the optional parameters can be an exact or regular expression match. As in most configurations

in OpenNMS where regular expression matching can be optionally applied, prefix the value with the ~ character.

Any subsequent scan of the node or re-imports of NMS provisioning group will force this policy to be applied. IP Interface
entities that already exist that match this policy will not be deleted. Existing interfaces can be deleted by recreating the

node in the Provisioning Groups screen (simply change the foreign ID and re-import the group) or by using the ReST API:

curl -X DELETE -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/nodes/6/ipinterfaces/10.1.1.1

The next step in this example is to define a policy that sets discovered 192.168 network addresses to be unmanaged (not
managed) in OpenNMS. Again, click the Add Policy button and let’s call this policy noMgt192168s. Again, choose the Mach
IP Interface policy and this time set the action to UNMANAGE.

NOTE The UNMANAGE behavior will be applied to existing interfaces.

Like the Matching IP Interface Policy, this policy controls the whether discovered SNMP interface entities are to be
persisted and whether or not OpenNMS should collect performance metrics from the SNMP agent for Interface’s index
(MIB2 IfIndex).

In this example, we are going to create a policy that doesn’t persist interfaces that are AAL5 over ATM or type 49 (ifType).
Following the same steps as when creating an IP Management Policy, edit the foreign source definition and create a new
policy. Let’s call it: noAAL5s. We’ll use Match SNMP Interface class for each policy and add a parameter with ifType as the
key and 49 as the value.

At the appropriate time during the scanning phase, Provisiond will evaluate the policies in the foreign
NOTE source definition and take appropriate action. If during the policy evaluation process any policy matches
for a “DO_NOT_PERSIST” action, no further policy evaluations will happen for that particular entity (IP

Interface, SNMP Interface).

With this policy, nodes entities will automatically be assigned categories. The policy is defined in the same manner as the IP
and SNMP interface polices. Click the Add Policy button and give the policy name, cisco and choose the Set Node Category
class. Edit the required category key and set the value to Cisco. Add a policy parameter and choose the sysObjectId key with
avalue ~M\ .1\ 3\ 6\ TVLANL TGN L5

New Import Capabilities

Several new XML entities have been added to the import requisition since the introduction of the OpenNMS Importer
service in version 1.6. So, in addition to provisioning the basic node, interface, service, and node categories, you can now

also provision asset data.

117

Provisiond Configuration

The configuration of the Provisioning system has moved from a properties file (model-importer.properties) to an XML
based configuration container. The configuration is now extensible to allow the definition of 0 or more import requisitions
each with their own Cron based schedule for automatic importing from various sources (intended for integration with
external URL such as HTTP and this new DNS protocol handler.

A default configuration is provided in the OpenNMS etc/ directory and is called: provisiond-configuration.xml. This default
configuration has an example for scheduling an import from a DNS server running on the localhost requesting nodes from

the zone, localhost and will be imported once per day at the stroke of midnight. Not very practical but is a good example.

<?xml version="1.0" encoding="UTF-8"?>
<provisiond-configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://xmlns.opennms.org/xsd/config/provisiond-configuration”
foreign-source-dir="/opt/opennms/etc/foreign-sources"
requistion-dir="/opt/opennms/etc/imports"
importThreads="8"
scanThreads="10"
rescanThreads="10"
writeThreads="8" >
Qll==
http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger[http://www.quartz-
scheduler.org/documentation/quartz-1.x/tutorials/crontrigger]
Field Name Allowed Values Allowed Special Characters
Seconds 0-59 , - * / Minutes 0-59 , - * / Hours 0-23 , - * /
Day-of-month1-31, - * 2 / L W C Month1-12 or JAN-DEC, - * /
Day-of-Week1-7 or SUN-SAT, - * 2 / L C # Year (Opt)empty, 1970-2099, - * /
-->

<requisition-def import-name="NMS"
import-url-resource="file://opt/opennms/etc/imports/NMS.xmL">
<cron-schedule>@ @ @ * * ? *</cron-schedule> <!-- daily, at midnight -->

</requisition-def>
</provisiond-configuration>

Like many of the daemon configurations in the 1.7 branch, Provisiond’s configuration is re-loadable without having to
restart OpenNMS. Use the reloadDaemonConfig uei:

/opt/opennms/bin/send-event.pl uei.opennms.org/internal/reloadDaemonConfig --parm 'daemonName Provisiond'

This means that you don’t have to restart OpenNMS every time you update the configuration!

Provisioning Asset Data

The Provisioning Groups Web-UI had been updated to expose the ability to add Node Asset data in an import requisition.
Click the Add Node Asset link and you can select from a drop down list all the possible node asset attributes that can be
defined.

After an import, you can navigate to the Node Page and click the Asset Info link and see the asset data that was just

provided in the requisition.

118

External Requisition Sources

Because Provisiond takes a URL as the location service for import requisitions, OpenNMS can be easily extended to support
sources in addition to the native URL handling provided by Java: file:;/, http:/, and https://. When you configure Provisiond
to import requisitions on a schedule you specify using a URL Resource. For requisitions created by the Provisioning Groups
WebUI, you can specify a file based URL.

CAUTION <need further documentation>

Provisioning Nodes from DNS

The new Provisioning service in OpenNMS is continuously improving and adapting to the needs of the community. One of
the most recent enhancements to the system is built upon the very flexible and extensible API of referencing an import
requisition’s location via a URL. Most commmonly, these URLs are files on the file system (e.
file:/opt/opennms/etc/imports/<my-provisioning-group.xml>) as requisitions created by the Provisioning Groups UL
However, these same requistions for adding, updating, and deleting nodes (based on the original model importer) can also

come from URLs specifying the HTTP protocol: http://myinventory.server.org/nodes.cgi)

Now, using Java’s extensible protocol handling specification, a new protocol handler was created so that a URL can be
specified for requesting a Zone Transfer (AXFR) request from a DNS server. The A records are recorded and used to build
an import requisition. This is handy for organizations that use DNS (possibly coupled with an IP management tool) as the
data base of record for nodes in the network. So, rather than ping sweeping the network or entering the nodes manually
into OpenNMS Provisioning UI, nodes can be managed via 1 or more DNS servers. The format of the URL for this new

protocol handler is:

dns://<host>[:port]/<zone>[/<foreign-source>/][?expression=<regex>]

Simple Example

dns://my-dns-server/myzone.com

This will import all A records from the host my-dns-server on port 53 (default port) from zone myzone.com and since the

foreign source (a.k.a. the provisioning group) is not specified it will default to the specified zone.

You can also specify a subset of the A records from the zone transfer using a regular expression:

dns://my-dns-server/myzone.com/portland/?expression="por-.*

This will import all nodes from the same server and zone but will only manage the nodes in the zone matching the regular
expression "port-.* and will and they will be assigned a unique foreign source (provisioning group) for managing these
nodes as a subset of nodes from within the specified zone.

If your expression requires URL encoding (for example you need to use a ? in the expression) it must be properly encoded.

dns://my-dns-server/myzone.com/portland/?expression="por[0-9]%3F

Currently, the DNS server requires to be setup to allow a zone transfer from the OpenNMS server. It is recommended that a
secondary DNS server is running on OpenNMS and that the OpenNMS server be allowed to request a zone transfer. A quick

way to test if zone transfers are working is:

119

http://myinventory.server.org/nodes.cgi

dig -t AXFR @<dn5Server> <zone>

4.6. Adapters

The OpenNMS Provisiond API also supports Provisioning Adapters (plugins) for integration with external systems during
the provisioning Import phase. When node entities are added, updated, deleted, or receive a configuration management

change event, OpenNMS will call the adapter for the provisioning activities with integrated systems.

Currently, OpenNMS supports the following adapters:

4.6.1. DDNS Adapter

The Opposite end of Provisiond integration from the DNS Requisition Import, is the DDNS adapter. This adapter uses the
dynamic DNS protocol to update a DNS system as nodes are provisioned into OpenNMS. To configure this adapter, edit the

opennms.properties file and set the importer.adapter.dns.server property:

importer.adapter.dns.server=192.168.1.1

4.6.2. RANCID Adapter

Integration has been integrated with RANCID though this new APIL.
CAUTION <More documentation needed>
CAUTION Maps (soon to be moved to Mapd) <documentation required>

CAUTION WiMax-Link (soon to be moved to Linkd) <documentation required>

4.7. Integrating with Provisiond

The ReST API should be used for integration from other provisioning systems with OpenNMS. The ReST API provides an
interface for defining foreign sources and requisitions.

4.7.1. Provisioning Groups of Nodes

Just as with the WebUI, groups of nodes can be managed via the ReST API from an external system. The steps are:
1. Create a Foreign Source (if not using the default) for the group
2. Update the SNMP configuration for each node in the group

3. Create/Update the group of nodes

4.7.2. Example

Step 1- Create a Foreign Source

If policies for this group of nodes are going to be specified differently than the default policy, then a foreign source should

be created for the group. Using the ReST AP], a foreign source can be provided. Here is an example:

120

NOTE The XML can be imbedded in the curl command option -d or be referenced from a file if the @ prefix is
used with the file name as in this case.

The XML file: customer-a.foreign-source.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<foreign-source date-stamp="2009-10-12T717:26:11.616-04:00" name="customer-a" xmlns=
"http://xmlns.opennms.org/xsd/config/foreign-source">
<scan-interval>1d</scan-interval>
<detectors>
<detector class="org.opennms.netmgt.provision.detector.icmp.IcmpDetector" name="ICMP"/>
<detector class="org.opennms.netmgt.provision.detector.snmp.SnmpDetector” name="SNMP"/>
</detectors>
<policies>
<policy class="org.opennms.netmgt.provision.persist.policies.MatchingIpInterfacePolicy" name="no-
192-168">
<parameter value="UNMANAGE" key="action"/>
<parameter value="ALL_PARAMETERS" key="matchBehavior"/>
<parameter value="~A192\.168\..*" key="1ipAddress"/>
</policy>
</policies>
</foreign-source>

Here is an example curl command used to create the foreign source with the above foreign source specification above:

curl -v -u admin:admin -X POST -H 'Content-type: application/xml' -d '@customer-a.foreign-source.xml'
http://localhost:8980/opennms/rest/foreignSources

Now that you’ve created the foreign source, it needs to be deployed by Provisiond. Here an the example using the curl

command to deploy the foreign source:

curl -v -u admin:admin http://localhost:8980/opennms/rest/foreignSources/pending/customer-a/deploy -X PUT

NOTE The current API doesn’t strictly follow the ReST design guidelines and will be updated in a later release.

Step 2 - Update the SNMP configuration

The implementation only supports a PUT request because it is an implied "Update" of the configuration since it requires an
IP address and all IPs have a default configuration. This request is is passed to the SNMP configuration factory in OpenNMS
for optimization of the configuration store snmp-config.xml. This example changes the community string for the IP address
10.1.1.1 to yRuSonoZ.

NOTE Community string is the only required element

curl -v -X PUT -H "Content-Type: application/xml" -H "Accept: application/xml" -d <snmp-
info><community>yRuSonoZ</community><port>161</port><retries>1</retries><timeout>2000</timeout><version>v2
c</version></snmp-info>" -u admin:admin http://localhost:8980/opennms/rest/snmpConfig/10.1.1.1

Step 3 - Create/Update the Requisition

This example adds 2 nodes to the Provisioning Group, customer-a. Note that the foreign-source attribute typically has a 1 to
1 relationship to the name of the Provisioning Group requisition. There is a direct relationship between the foreign- source

attribute in the requisition and the foreign source policy specification. Also, typically, the name of the provisioning group

121

will also be the same. In the following example, the ReST API will automatically create a provisioning group based on the

value foreign-source attribute specified in the XML requisition.

curl -X POST -H "Content-Type: application/xml" -d "<?xml version="1.0" encoding="UTF-8"7?><model-import
xmlns="http://xmlns.opennms.org/xsd/config/model-import" date-stamp="2009-03-07T17:56:53.123-05:00" last-
import="2009-03-07717:56:53.117-05:00" foreign-source="customer-a"><node node-label="p-brane" foreign-
id="1" ><interface ip-addr="10.0.1.3" descr="en1" status="1" snmp-primary="P"><monitored-service service-
name="ICMP"/><monitored-service service-name="SNMP"/></interface><category name="Production"/><category
name="Routers"/></node><node node-label="m-brane" foreign-id="1" ><interface ip-addr="10.0.1.4"
descr="en1" status="1" snmp-primary="P"><monitored-service service-name="ICMP"/><monitored-service
service-name="SNMP"/></interface><category name="Production"/><category name="Routers"/></node></model-
import>" -u admin:admin http://localhost:8980/opennms/rest/requisitions

A provisioning group file called etc/imports/customer-a.xml will be found on the OpenNMS system following the successful
completion of this curl command and will also be visible via the WebUI

NOTE Add, Update, Delete operations are handled via the ReST API in the same manner as described in detailed
specification.

4.8. Provisioning Single Nodes (Quick Add Node)

Often, it is requested that a single node add/update be completed for an already defined provisioning group. There is a
ReST API for the Add Node implementation found in the OpenNMS Web-UL For this to work, the provisioning group must

already exist in the system even if there are no nodes defined in the group.
1. Create a foreign source (if required)
2. Specify SNMP configuration

3. Provide a single node with the following specification

4.9. Fine Grained Provisioning Using provision.pl
provision.pl provides an example command-line interface to the provisioning-related OpenNMS REST API endpoints.
The script has many options but the first 3 optional parameters are described here:

NOTE You can use --help to the script to see all the available options.

--username (default: admin)
--password (default: admin)
--url (default: http://localhost:8980/opennms/rest)

4.9.1. Create a new requisition

provision.pl provides easy access to the requisition REST service using the requisition option:
${OPENNMS_HOME}/bin/provision.pl requisition customer1

This command will create a new, empty (containing no nodes) requisition in OpenNMS.

The new requisition starts life in the pending state. This allows you to iteratively build the requisition and then later

122

actually import the nodes in the requisition into OpenNMS. This handles all adds/changes/deletes at once. So, you could be
making changes all day and then at night either have a schedule in OpenNMS that imports the group automatically or you
can send a command through the REST service from an outside system to have the pending requisition

imported/reimported.

You can get a list of all existing requisitions with the 1ist option of the provision.pl script:

${OPENNMS_HOME}/bin/provision.pl list

Create a new Node

${OPENNMS_HOME}/bin/provision.pl node add customer1 1 node-a

This command creates a node element in the requisition customer1 called node-a using the script’s node option. The node’s
foreign-ID is 1 but it can be any alphanumeric value as long as it is unique within the requisition. Note the node has no

interfaces or services yet.

Add an Interface Element to that Node

${OPENNMS_HOME}/bin/provision.pl interface add customer1 1 127.0.0.1

This command adds an interface element to the node element using the interface option to the provision.pl command and

it can now be seen in the pending requisition by running provision.pl requisition list customerT.

Add a Couple of Services to that Interface

${OPENNMS_HOME}/bin/provision.pl service add customer1 1 1
${OPENNMS_HOME}/bin/provision.pl service add customer1 1 1

CMP

27.0.0.1 1
27.0.0.1 SNMP

This adds the 2 services to the specified 127.0.0.1 interface and is now in the pending requisition.
Set the Primary SNMP Interface

${OPENNMS_HOME}/bin/provision.pl interface set customer1 1 127.0.0.1 snmp-primary P
This sets the 127.0.0.1 interface to be the node’s Primary SNMP interface.
Add a couple of Node Categories

${OPENNMS_HOME}/bin/provision.pl category add customer1 1 Routers
${OPENNMS_HOME}/bin/provision.pl category add customer1 1 Production

This adds the two categories to the node and is now in the pending requisition.

These categories are case-sensitive but do not have to be already defined in OpenNMS. They will be created on the fly

during the import if they do not already exist.

123

Setting Asset Fields on a Node

${OPENNMS_HOME}/bin/provision.pl asset add customer1 1 serialnumber 9999

This will add value of 9999 to the asset field: serialnumber.

Deploy the Import Requisition (Creating the Group)

${OPENNMS_HOME}/bin/provision.pl requisition import customer

This will cause OpenNMS Provisiond to import the pending customer1 requisition. The formerly pending requisition will

move into the deployed state inside OpenNMS.

Very much the same as the add, except that a single delete command and a re-import is required. What happens is that the

audit phase is run by Provisiond and it will be determined that a node has been removed from the requisition and the

node will be deleted from the DB and all services will stop activities related to it.

${OPENNMS_HOME}/bin/provision.pl node delete customer1 1 node-a
${OPENNMS_HOME}/bin/provision.pl requisition import customer

This completes the life cycle of managing a node element, iteratively, in a import requisition.

4.10. Yet Other API Examples

The provision.pl script doesn’t supply this feature but you can get it via the REST API. Here is an example using curl:

#!/bin/bash

REQ=$1

curl -X GET -H "Content-Type: application/xml" -u admin:admin
http://localhost:8980/opennms/rest/requisitions/$REQ 2>/dev/null | xmllint --format -

124

Chapter 5. Database Reports

Reporting on information from the OpenNMS monitoring system is important for strategical or operational decisions.
Database Reports give access to the embedded JasperReports engine and allows to create and customize report templates.

These reports can be executed on demand or on a pre-defined schedule within OpenNMS.

Originally Database Reports were introduced to create reports working on data stored in the OpenNMS
NOTE database only. This is no longer mandatory, also performance data can be used. Theoretically the

reports do not necessarily need to be OpenNMS related.

The OpenNMS Report Engine allows the creation of various kinds of reports and also supports
WARNING distributed report repositories. At the moment these features are not covered by this

documentation. Only reports using JasperReports are described here.

5.1. Overview

The OpenNMS Report Engine uses the JasperReport library to create reports in various output formats. Each report
template must be a *.jrxml file. The OpenNMS Report Engine passes a JDBC Connection to the OpenNMS Database to each
report on execution.

Table 62. feature overview

Supported Output Formats PDF, CSV

JasperReport Version 6.1.1

For more details on how JasperReports works, please have a look at the official documentation of Jaspersoft Studio.

5.2. Add a custom report
To add a new JasperReport report to the Local OpenNMS Report Repository, the following steps are required.

At first a new entry in the file $OPENNMS_HOME/etc/database-reports.xml must be created.

<report
id="MyReport" <1>
display-name="My Report" <2>
online="true" <3>
report-service="jasperReportService" <4>
description="This is an example description. It shows up in the web ui when creating an online report"
<5>
/>
@ A unique identifier.
@ The name of the report. Is shown when using the web ui.
® Defines if this report can be executed on demand, otherwise only scheduling is possible.

@ The report service implementation to use. In most cases this is jasperReportService.

® A description of the report. Is shown when using the web ui.

In addition a new entry in the file $0PENNMS_HOME/etc/jasper-reports.xml must be created.

125

http://community.jaspersoft.com/documentation/tibco-jaspersoft-studio-user-guide/v610/getting-started-jaspersoft-studio

<report
id="MyReport" <1>
template="My-Report.jrxml" <2>
engine="jdbc" <3>
/>
@ The identifier defined in the previous step. This identifier must exist in $0PENNMS_HOME/etc/database-reports.xml.
@ The name of the template. The template must be located in $OPENNMS_HOME/etc/report-templates.

® The engine to use. It is either jdbc or null.

5.3. Use of Jaspersoft Studio
When developing new reports it is recommended to use the Jaspersoft Studio application. It can be downloaded here.

We recommend always to use the same Jaspersoft Studio version as the JasperReport library OpenNMS uses.
Currently OpenNMS uses version 6.1.1.

TIP

5.3.1. Connect to the OpenNMS Database

In order to actually create SQL statements against the OpenNMS database a database Data Adapter must be created. The
official Jaspersoft Studio documentation and wiki covers this aspect.

5.3.2. Use Measurements Datasource and Helpers

To use the Measurements API it is required to add the Measurements Datasource library to the build path of jasperStudio.
This is achieved with right click in the Project Explorer and select Configure Buildpath.

ece Properties for MyReports
© | Javasuitd path

Ssouco s rropors EITTIEN 4 Oerana Eoort

JARS and class folders on thebulld path:

>
» B JasperReports Livary

1. Switch to the Libraries tab.

2. Click Add External JARs and select the opennms-jasperstudio-extension-17.0.0-jar-with-dependencies.jar file located in
$OPENNMS_HOME/contrib/jasperstudio-extension.

3. Close the file selection dialog.

ece Properties for MyReports.
© | Java suild path

Gsave_rrones IR 0,00 ascor

anre
[
» =i,

=,

1. Close the dialog.

126

http://community.jaspersoft.com/project/jaspersoft-studio

2. The Measurements Datasource and Helpers should now be available.

3. Go to the Dataset and Query Dialog in Jaspersoft Studio and select a language called measurement.

ece Dataset and Query Dialog

" node [$9 [nodeLd}] inter faceSnmp[$P {interface}]"/»
"AVERAGE" 1abel-"IFOut 10-"node 3P {nodeid}] inter faceSnmp[SP{inter face}]"/>

Fior Exprossion] Data previow

Even if there is no Read Fields functionality available, the Data preview can be used. It is required the
the access to the Measurements API is possible using the connection parameters MEASUREMENT_URL,
MEASUREMENT_USERNAME and MEASUREMENT _PASSWORD. The Supported Fields section gives more details. In

addition you have

NOTE

5.4. Accessing Performance Data

Before OpenNMS 17 it was possible to access the performance data stored in .rrd or .jrobin files
WARNING directly by using the jrobin language extension provided by the RrdDataSource. This is no longer

possible and the Measurements Datasource has to be used.

To access performance data within reports we created a custom Measurement Datasource which allows to query the
Measurements API and process the returned data in your reports. Please refer to the official Measurements API

documentation on how to use the Measurements API .

NOTE When using the Measurements Datasource within a report a HTTP connection to the Measurements API is
only established if the report is NOT running within OpenNMS, e.g. when used with Jaspersoft Studio.

To receive data from the Measurements API simply create a query as follows:

Sample queryString to receive data from the Measurements API

<query-request step="300000" start="¢$P{startDateTime}" end="¢P{endDateTime}" maxrows="2000"> <1>

<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets" transient="false" resourceld=
"node[$P{nodeld}].interfaceSnmp[$P{interface}]"/>

<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets" transient="false"
resourceld="node[$P{nodeid}].interfaceSnmp[$P{interface}]"/>
</query-request>

@ The query language. In our case measurement, but JasperReports supports a lot out of the box, such as sql, xpath, etc.

5.4.1. Fields

Each datasource should return a number of fields, which then can be used in the report. The Measurement Datasource

supports the following fields:

127

http://docs.opennms.org/opennms/releases/17.0.0/guide-development/guide-development.html#_measurements_api
http://docs.opennms.org/opennms/releases/17.0.0/guide-development/guide-development.html#_measurements_api

Field name Field type Field description

<label> java.lang.Double Each Source defined as transient=false
can be used as a field.
The name of the field is the 1abel, e.g.

IfInOctets
timestamp java.util.Date The timestamp of the sample.
step java.lang.Long The Step size of the Response. Returns

the same value for all rows.

start java.lang.Long The Start timestamp in milliseconds of
the Resopnse. Returns the same value
for all rows.

end java.lang.Long The End timestamp in milliseconds of
the Response. Returns the same value
for all rows.

For more details about the Response, please refer to the official Measurement API documentation.

5.4.2. Parameters

In addition to the queryString the following JasperReports parameters are supported.

Parameter name Required Description

MEASUREMENT _URL yes The URL of the Measurements API, e.g.
http://localhost:8980/opennms/rest/me
asurements

MEASUREMENT_USERNAME no If authentication is required, specify

the username, e.g. admin

MEASUREMENT_PASSWORD no If authentication is required, specify
the password, e.g. admin

5.5. Helper methods
There are a couple of helper methods to help creating reports in OpenNMS.
These helpers come along with the Measurement Datasource.

Table 63. supported helper methods

128

http://docs.opennms.org/opennms/releases/17.0.0/guide-development/guide-development.html#_measurements_api
http://localhost:8980/opennms/rest/measurements
http://localhost:8980/opennms/rest/measurements

Helper class Helper Method Description

org.opennms.netmgt.jasper.helper.Meas getNodeOrNodeSourceDescriptor(nodeld, Generatesa node source descriptor

urementsHelper foreignSource, foreignId) according to the input paramters.
Either node[nodeId] or
nodeSource[foreignSource:foreignld] is
returned.
nodeSource[foreignSource:foreignld] is
only returned if foreignSource and
foreignIdis not empty and not null.
Otherwise always node[nodeId] is
returned.

nodeld : String, the id of the node

foreignSource: String, the foreign
source of the node, may be null

foreignId: String, the foreign id of the
node, may be null.

For more details checkout Usage of the
node source descriptor.

org.opennms.netmgt.jasper.helper.Meas getIr]terfaceDescriptor(snmpifname, Returns the interface descriptor of a
urementsHelper snmpifdescr, snmphysaddr) given interface, e.g. en0-085e607e9e00.
The input paramaters are prioritized.
If a snmpifdescr is specified, it is used
instead of the snmpifname.

It a snmpifdescr is defined, it will be

appended to snmpifname/snmpifdescr.

snmpifname: String, the interface name
of the interface, e.g. end. May be null.

snmpifdescr: String, the description of
the interface, e.g. en0. May be null.

snmphyaddr: String, the mac address of
the interface, e.g. 005e607e9¢00. May be
null.

As each input parameter may be null,
not all of them can be null at the same

time. At least one input parameter has
to be defined.

For more details checkout Usage of the
interface descriptor.

5.5.1. Usage of the interface descriptor

An interfaceSnmp is addressed with the exact interface descriptor. To allow easy access to the interface descriptor a

helper tool is provided. The following example shows the usage of that helper.

129

Jjrxmlreport snippet to visualize the use of the interface descriptor

<parameter name="interface" class="java.lang.String" isForPrompting="false">
<parameterDescription><![CDATA[] |></parameterDescription>
<defaultValueExpression><![CDATA[org.opennms.netmgt.jasper.helper.MeasurementsHelper.getInterfaceDescrip
tor ($P{snmpifname}, $P{snmpifdescr}, $P{snmpphysaddr})]]></defaultValueExpression>
</parameter>
<queryString language="Measurement">
<![CDATA[<query-request step="300000" start="$P{startDateTime}" end="$P{endDateTime}" maxrows="2000">
<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets" transient="false"
resourceld="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets" transient="false"
resourceld="node[$P{nodeld}].interfaceSnmp[$P{interface}]"/>
</query-request>]]>

5.5.2. Usage of the node source descriptor

A node is addressed by a node source descriptor. The node source descriptor references the node either via the foreign

source and foreign id or by the node id.

If store by foreign source is enabled only addressing the node via foreign source and foreign 1id is possible.

In order to make report creation easier, there is a helper method to create the node source descriptor.
NOTE For more information about store by foreign source, please have a look at our Wiki.

The following example shows the usage of that helper.

jrxmlreport snippet to visualize the use of the node source descriptor.

<parameter name="nodeResourceDescriptor" class="java.lang.String" isForPrompting="false">
<defaultValueExpression><![CDATA[org.opennms.netmgt.jasper.helper.MeasurementsHelper.getNodeOrNodeSource
Descriptor(String.valueOf($P{nodeid}), $P{foreignsource}, $P{foreignid})]]></defaultValueExpression>
</parameter>
<queryString language="Measurement">
<![CDATA[<query-request step="300000" start="$P{startDateTime}" end="$P{endDateTime}" maxrows="2000">
<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets" transient="false"
resourceld="$P{nodeResourceDescriptor}.interfaceSnmp[en0-005e607e9e00]"/>
<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets" transient="false"
resourceld="$P{nodeResourceDescriptor}.interfaceSnmp[en0-005e607e9¢00]" />
</query-request>] >

Depending on the input parameters you either get a node resource descriptor or a foreign source/foreign id resource

descriptor.

5.5.3. Usage of the interface descriptor

An interfaceSnmp is addressed with the exact interface descriptor. To allow easy access to the interface descriptor a

helper tool is provided. The following example shows the usage of that helper.

130

http://www.opennms.org/wiki/ForeignSource/foreignId_Data_Storage_How-To

Jjrxmlreport snippet to visualize the use of the interface descriptor

<parameter name="interface" class="java.lang.String" isForPrompting="false">
<parameterDescription><![CDATA[] |></parameterDescription>
<defaultValueExpression><![CDATA[org.opennms.netmgt.jasper.helper.MeasurementsHelper.getInterfaceDescrip
tor ($P{snmpifname}, $P{snmpifdescr}, $P{snmpphysaddr})]]></defaultValueExpression>
</parameter>
<queryString language="Measurement">
<![CDATA[<query-request step="300000" start="$P{startDateTime}" end="$P{endDateTime}" maxrows="2000">
<source aggregation="AVERAGE" label="IfInOctets" attribute="ifHCInOctets" transient="false"
resourceld="node[$P{nodeId}].interfaceSnmp[$P{interface}]"/>
<source aggregation="AVERAGE" label="IfOutOctets" attribute="ifHCOutOctets" transient="false"
resourceld="node[$P{nodeld}].interfaceSnmp[$P{interface}]"/>
</query-request>]]>

To get the appropriate interface descriptor depends on the input parameter.

5.5.4. Use HTTPS

To establish a secure connection to the Measurements API the public certificate of the running OpenNMS must be imported
to the Java Trust Store. In Addition OpenNMS must be configured to use that Java Trust Store. Please follow the instructions

in this chapter to setup the Java Trust Store correctly.

In addition please also set the property org.opennms.netmgt.jasper.measurement.ssl.enable in

$OPENNMS_HOME\etc\opennms.properties to true to ensure that only secure connections are established.

If org.opennms.netmgt.jasper.measurement.ssl.enable is set to false an accidentally insecure
WARNING connection can be established to the Measurements API location. A SSL secured connection can

be established even if org.opennms.netmgt.jasper.measurement.ssl.enable is set to false.

5.6. Limitations

* Only a JDBC Datasource to the OpenNMS Database connection can be passed to a report, or no datasource at all. One

does not have to use the datasource, though.

131

Chapter 6. Enhanced Linkd

Enhanced Linkd (Enlinkd) has been designed to discover connections between nodes using data generated by various link
discovery protocols and accessible via SNMP. Enlinkd gathers this data on a regular interval and creates a snapshot of a
device’s neighbors from its perspective. The connections discovered by Enlinkd are called Links. The term Link, within the
context of Enlinkd, is not synonymous with the term "link" when used with respect to the network OSI Layer 2 domain,
whereby a link only indicates a Layer 2 connection. A Link in context of Enlinkd is a more abstract concept and is used to
describe any connection between two OpenNMS Nodes. These Links are discovered based on information provided by an

agent’s understanding of connections at the OSI Layer 2, Layer 3, or other OSI layers.

The following sections describe the Enlinkd daemon and its configuration. Additionally, the supported Link discovery
implementations will be described as well as a list of the SNMP MIBs that the SNMP agents must expose in order for
EnLinkd to gather Links between Nodes. FYI: Detailed information about a node’s connections (discovered Links) and

supporting link data can be seen on the Node detail page within the OpenNMS Web-UIL

6.1. Enlinkd Daemon

Essentially Enlinkd asks each device the following question: "What is the network topology from your point of view". From
this point of view this will only provide local topology discovery features. It does not attempt to discover global topology or

to do any correlation with the data coming from other nodes.

For large environments the behavior of Enlinkd can be configured. During the Link discovery process informational and

error output is logged to a global log file.

Table 64. Global log and configuration files for Enlinkd

File Location Description

en11'nkd—configuration.xml $OPENNMS_HOME/etC Global Conﬁguration for the daemon
process

enlinkd.log $OPENNMS_HOME/1ogs Global Enlinkd log file

log4j2.xml $OPENNMS_HOME/etc Configuration file to set the log level
for Enlinkd

Configuration file for Enlinkd

<?xml version="1.0" encoding="IS0-8859-1"7>

<enlinkd-configuration threads="5"
initial_sleep_time="60000"
rescan_interval="86400000"
use-cdp-discovery="true"
use-bridge-discovery="true"
use-11dp-discovery="true"
use-ospf-discovery="true"
use-isis-discovery="true"
/>

Table 65. Descriptione for global configuration parameter
Attribute Type Default Description

threads Integer 5 Number of parallel threads
used to discover the topology.

132

Attribute Type Default Description

initial_sleep_time Integer 60000 Time in milliseconds to wait
for discovering the topology
after OpenNMS is started.

rescan_interval Integer 86400000 Interval to rediscover and
update the topology in
milliseconds.

use-cdp-discovery Boolean true Enable or disable topology
discovery based on CDP
information.

use-bridge-discovery Boolean true Enable or disable algorithm
to discover the topology
based on the Bridge MIB
information.

use-1ldp-discovery Boolean true Enable or disable topology
discovery based on LLDP
information.

use-ospf-discovery Boolean true Enable or disable topology
discovery based on OSPF
information.

use-isis-discovery Boolean true Enable or disable topology
discovery based on IS-IS
information.

If multiple protocols are enabled, the links will be discovered for each enabled discovery protocol. =~ The
NOTE topology WebUI will visualize Links for each discovery protocol. For example if you start CDP and
LLDP discovery, the WebUI will visualize a CDP Link and an LLDP Link.

6.2. Layer 2 Link Discovery

Enlinkd is able to discover Layer 2 network links based on the following protocols:
* Link Layer Discovery Protocol (LLDP)
* Cisco Discovery Protocol (CDP)
» Transparent Bridge Discovery

This information are provided by SNMP Agents with appropriate MIB support. For this reason it is required to have a
working SNMP configuration running. The following section describes the required SNMP MIB provided by the SNMP
agent to allow the Link Discovery.

6.2.1. LLDP Discovery

The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol. It is used by network devices for
advertising their identity, capabilities, and neighbors. LLDP performs functions similar to several proprietary protocols,
such as the Cisco Discovery Protocol (CDP), Extreme Discovery Protocol, Foundry Discovery Protocol (FDP), Nortel Discovery
Protocol (also known as SONMP), and Microsoft’s Link Layer Topology Discovery (LLTD) [Wikipedia LLDP:
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol].

133

https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol
https://en.wikipedia.org/wiki/Cisco_Discovery_Protocol
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

Only nodes with a running LLDP process can be part of the link discovery.
NOTE running a show 11dp neighbor command on the device.

The data is similar to

Linux and Windows servers don’t have an

LLDP process running by default and will not be part of the link discovery.

The following OIDs are supported to discover and build the LLDP network topology.

Table 66. Supported OIDs from LLDP-MIB
Name

lldpLocChassisIdSubtype

lldpLocChassisld

lldpLocSysName

lldpLocPortIdSubtype

lldpLocPortld

lldpLocPortDesc

OID

.1.0.8802.1.1.2.1.3.1.0

.1.0.8802.1.1.2.1.3.2.0

.1.0.8802.1.1.2.1.3.3.0

.1.0.8802.1.1.2.1.3.7.1.2

.1.0.8802.1.1.2.1.3.7.1.3

.1.0.8802.1.1.2.1.3.7.1.4

Description

The type of encoding used to identify
the chassis associated with the local
system. Possible values can be:

chassisComponent(1)
interfaceAlias(2)
portComponent(3)
macAddress(4)
networkAddress(5)
interfaceName(6)

local(7)

The string value used to identify the
chassis component associated with the
local system.

The string value used to identify the
system name of the local system.

If the local agent supports IETF RFC
3418, lldpLocSysName object should
have the same value of sysName object.

The type of port identifier encoding
used in the associated lldpLocPortld
object.

The string value used to identify the
port component associated with a
given port in the local system.

The string value used to identify the
802 LAN station’s port description
associated with the local system.

If the local agent supports IETF RFC
2863, lldpLocPortDesc object should
have the same value of ifDescr object.

134

http://tools.ietf.org/html/rfc3418
http://tools.ietf.org/html/rfc3418

Name

lldpRemChassisIdSubtype

lldpRemChassisld

135

OID

.1.0.8802.1.1.2.1.4.1.1.4

.1.0.8802.1.1.2.1.4.1.1.5

Description

The type of encoding used to identify
the chassis associated with the local
system. Possible values can be:
chassisComponent(1)
interfaceAlias(2)

portComponent(3)

macAddress(4)

networkAddress(5)

interfaceName(6)

local(7)

The string value used to identify the
chassis component associated with the
remote system.

Name

lldpRemPortIdSubtype

OID

.1.0.8802.1.1.2.1.4.1.1.6

Description

The type of port identifier encoding
used in the associated lldpRemPortId
object.

interfaceAlias(1)

the octet string identifies a particular
instance of the ifAlias object (defined
in IETF RFC 2863). If the particular
ifAlias object does not contain any
values, another port identifier type
should be used.

portComponent(2)

the octet string identifies a particular
instance of the entPhysicalAlias object
(defined in IETF RFC 2737) for a port or
backplane component.

macAddress(3)

this string identifies a particular
unicast source address (encoded in
network byte order and IEEE 802.3
canonical bit order) associated with
the port (IEEE Std 802-2001).

networkAddress(4)

this string identifies a network address
associated with the port.

The first octet contains the JANA
AddressFamilyNumbers enumeration
value for the specific address type, and
octets 2 through N contain the
networkAddress address value in
network byte order.

interfaceName(5)

the octet string identifies a particular
instance of the ifName object (defined
in IETF RFC 2863).

If the particular ifName object does not
contain any values, another port
identifier type should be used.

agentCircuitld(6)

this string identifies a agent-local
identifier of the circuit (defined in RFC
3046)

136

Name OID

lldpRemPortId .1.0.8802.1.1.2.1.4.1.1.7
lldpRemPortDesc .1.0.8802.1.1.2.1.4.1.1.8
lldpRemSysName .1.0.8802.1.1.2.1.4.1.1.9

Description

The string value used to identify the
port component associated with the
remote system.

The string value used to identify the
description of the given port associated
with the remote system.

The string value used to identify the
system name of the remote system.

Generic information about the LLDP process can be found in the LLDP Information box on the Node Detail Page of the

device. Information gathered from these OIDs will be stored in the following database table:

lidplink
INTEGER "
INTEGER

INTEGER fk_lidplink_nodeid
Tex
INTEGER
TExT

INTEGER
e TIMESTAMP(S) WITH TIME ZONE
INTEGER

CHARACTER(1)

CHARACTER VARYING(256)
GHARAGTER VARYING(256)
CHARACTER VARYING(256)
CHARACTER VARYING(256)
CHARACTER VARYING(Z56)
GHARAGTER VARYING(256)
CHARACTER(1)

CHARACTER VARYING(16)
GHARAGTER VARYING(16)
CHARACTER VARYING(64}
TIMESTAMP(5) WITH TIME ZONE
GHARAGTER VARYING(64)
CHARACTER VARYING(64}

INTEGER
TEXT

TEXT

INTEGER

TEXT

‘TIMESTAMP (6) WITH TIME ZONE
lidplinklastpolitime “TIMESTAMP(6) WITH TIME ZONE

lidpelement

P INTEGER
nodeia INTEGER
Hapchassisia Text fi_lidpelement_nodeid

idpchassisidsubtype INTEGER
Hapsysname TEXT

lldpnodecreatetime TIMESTAMP(S) WITH TIME ZONE
idpnodelastpolitime TIMESTAMP(S) WITH TIME ZONE

Figure 13. Database tables related to LLDP discovery

6.2.2. CDP Discovery

The Cisco Discovery Protocol (CDP) is a proprietary link layer protocol from Cisco. It is used by network devices to advertise

identity, capabilities and neighbors. CDP performs functions similar to several proprietary protocols, such as the Link Layer

Discovery Protocol (LLDP), Extreme Discovery Protocol, Foundry Discovery Protocol (FDP), Nortel Discovery Protocol (also

known as SONMP), and Microsoft’s Link Layer Topology Discovery (LLTD). The CDP discovery uses information provided by

the CISCO-CDP-MIB and CISCO-VTP-MIB.

Only nodes with a running CDP process can be part of the link discovery. The data is similar to

NOTE running a show cdp neighbor command on the IOS CLI of the device. Linux and Windows servers don’t

have a CDP process running by default and will not be part of the link discovery.

The following OIDs are supported to discover and build the CDP network topology.

Table 67. Supported OIDS from the IF-MIB

Name OID

ifDescr .1.3.6.1.2.1.2.2.1.2

Table 68. Supported OIDS from the CISCO-CDP-MIB to discover links
Name OID

cdpInterfaceName .1.3.6.1.4.1.9.9.23.1.1.1.1.6

137

Description

A textual string containing information
about the interface.

This string should include the name of
the manufacturer, the product name
and the version of the interface
hardware/software.

Description

The name of the local interface as
advertised by CDP in the Port-ID TLV.

http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-CDP-MIB
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-VTP-MIB

Name

cdpCacheEntry

cdpCacheAddressType

cdpCacheAddress

cdpCacheVersion

cdpCacheDeviceld

cdpCacheDevicePort

cdpCachePlatform

cdpGlobalRun

cdpGlobalDeviceld

OID

.1.3.6.1.4.1.9.9.23.1.2.1.1

.1.3.6.1.4.1.9.9.23.1.2.1.1.3

.1.3.6.1.4.1.9.9.23.1.2.1.1.4

o1l 08aaobbola

.1.3.6.1.4.1.

.1.3.6.1.4.1.

.1.3.6.1.4.1.

.1.3.6.1.4.1.

.1.3.6.1.4.1.

9,923,

9.9.23.

1

1

1

1

1

1

NN

.2.1.1.6

.2.1.1.7

.2.1.1.8

.3.1.0

.3.4.0

Description

An entry (conceptual row) in the
cdpCacheTable, containing the
information received via CDP on one
interface from one device.

Entries appear when a CDP
advertisement is received from a
neighbor device.

Entries disappear when CDP is
disabled on the interface, or globally.

An indication of the type of address
contained in the corresponding
instance of cdpCacheAddress.

The (first) network-layer address of the
device’s SNMP-agent as reported in the
Address TLV of the most recently
received CDP message.

For example, if the corresponding
instance of cacheAddressType had the
value ip(1), then this object would be
an IP-address.

The Version string as reported in the
most recent CDP message.

The zero-length string indicates no
Version field (TLV) was reported in the
most recent CDP message.

The Device-ID string as reported in the
most recent CDP message.

The zero-length string indicates no
Device-ID field (TLV) was reported in
the most recent CDP message.

The Port-ID string as reported in the
most recent CDP message.

This will typically be the value of the
ifName object (e.g., Ethernet0).

The zero-length string indicates no
Port-ID field (TLV) was reported in the
most recent CDP message.

The Device’s Hardware Platform as
reported in the most recent CDP
message.

The zero-length string indicates that no
Platform field (TLV) was reported in
the most recent CDP message.

An indication of whether the Cisco
Discovery Protocol is currently
running.

Entries in cdpCacheTable are deleted
when CDP is disabled.

The device ID advertised by this device.
The format of this device id is
characterized by the value of
cdpGlobalDeviceldFormat object.

138

Name (0)0)] Description

cdpGlobalDeviceldFormat .1.3.6.1.4.1.9.9.23.1.3.7.0 An indication of the format of Device-
Id contained in the corresponding
instance of cdpGlobalDeviceld.
User can only specify the formats that
the device is capable of as denoted in
cdpGlobalDeviceldFormatCpb object.

serialNumber(1): indicates that the
value of cdpGlobalDeviceld object is in
the form of an ASCII string contain the
device serial number.

macAddress(2): indicates that the
value of cdpGlobalDeviceld object is in
the form of Layer 2 MAC address.

other(3): indicates that the value of
cdpGlobalDeviceld object is in the form
of a platform specific ASCII string
contain info that identifies the device.
For example: ASCII string contains
serialNumber appended/prepened with
system name.

Table 69. Supported OIDS from the CISCO-VTP-MIB.

vtpVersion .1.3.6.1.4.1.9.9.46.1.1.1.0 The version of VTP in use on the
local system.
A device will report its version
capability and not any particular
version in use on the device.
If the device does not support VTP,
the version is none(3).

ciscoVtpVlanState .1.3.6.1.4.1.9.9.46.1.3.1.1.2 The state of this VLAN.
The state mtuTooBigForDevice
indicates that this device cannot
participate in this VLAN because the
VLAN’s MTU is larger than the device
can support.

The state mtuTooBigForTrunk indicates
that while this VLAN’s MTU is
supported by this device, it is too large
for one or more of the device’s trunk
ports.

operational(1), suspended(2),
mtuTooBigForDevice(3),
mtuTooBigForTrunk(4)

ethernet(1), fddi(2), tokenRing(3),
fddiNet(4), trNet(5), deprecated(6)

ciscoVtpVlanName .1.3.6.1.4.1.9.9.46.1.3.1.1.4 The name of this VLAN.
This name is used as the ELAN-name
for an ATM LAN-Emulation segment of
this VLAN.

Generic information about the CDP process can be found in the CDP Information box on the Node Detail Page of the device.

139

Information gathered from these OIDs will be stored in the following database table:

[cdpelement
Fua INTEGER
nodeld INTEGER

cdpglobalrun INTEGER fk_cdpelement_nodeid | >

cdpglobaldeviceid TEXT
cdpnodecreatetime TIMESTAMP(8) WITH TIVE ZONE
cdpnodela:
cdpglobald

TIMESTAMP(6) WITH TIME ZONE
mat INTEGER

cdplink
INTEGER

INTEGER
INTEGER fi_cdplink_nodeid

cdplinkcreatetime TIMESTANP(6) WITH TIME ZONE
cdplinklastpolltime TIMESTAP(6) WITH TIME ZONE
INTEGER

node

INTEGER

atetime TIMESTAMP(6) WITH TIME ZONE

INTEGER
CHARACTER(1)
CHARACTER VARYING(256)
CHARACTER VARYING(256)
on CHARACTER VARYING(256)
CHARACTER VARYING(256)
CHARACTER VARYING(256)
CHARACTER VARYING(256)
CHARACTER(1)
CHARACTER VARYING(16)
CHARACTER VARYING(16)
operatingsystem CHARACTER VARYING(64)

lastcapsdpol TIMESTAP(6) WITH TIME ZONE

foreignsource CHARACTER VARYING(54)

foreignid CHARACTER VARYING(54)

Figure 14. Database tables related to CDP discovery

6.2.3. Transparent Bridge Discovery

Discovering Layer 2 network links using the Bridge Forwarding table requires a special algorithm. To discover Links an

algorithm based on a scientific paper with the title Topology Discovery for Large Ethernet Networks is implemented. The

gathered information is used to classify Links in macLink and bridgeLink. A macLink represents a Link between a

workstation or server identified by a mac address. A bridgeLink is a connection between backbone ports.

Transparent bridging is not loop free so if you have loops you have to enable the spanning tree protocol that will detect

loops and again will put some ports in a blocking state to avoid loops. To get links it is necessary to perform some

calculations that let us define the Links. The following MIBS must be supported by the SNMP agent to allow Transparent

Bridge Discovery.

Table 70. Supported MIBS from the Cisco-VTP MIB

Name

vtpVersion

Table 71. Supported OIDs from the IP-MIB
Name

ipNetToMedialfIndex

ipNetToMediaPhysAddress

ipNetToMediaNetAddress

OID

.1.3.6.1.4.1.9.9.46.1.1.1.0

OID

01036@0 100 abbedlalal

.1.3.6.1.2.1.4.22.1.2

.1.3.6.1.2.1.4.22.1.3

Description

The version of VTP in use on the local
system.

A device will report its version
capability and not any particular
version in use on the device.

If the device does not support VTP, the
version is none(3).

Description

The interface on which this entry’s
equivalence is effective.

The layer-2 interface identified by a
particular value of this index is the
same interface as identified by the
same value of ifIndex.

The media-dependent physical address.

The IpAddress corresponding to the
media-dependent physical address.

140

http://cs-pub.bu.edu/groups/nrg/readinglist/lowekamp-sigcomm01.pdf

ipNetToMediaType

1.3.6.1.2.1.4.22.1.4

Table 72. Supported OIDS from the BRIDGE-MIB

Name

dotldBaseBridgeAddress

dotldBaseNumPorts

dotldBaseType

dotldBasePort

dot1dPortIfIndex

141

OID

1o3o@a10doUaltoTallol

1.3.6.1.2.1.17.1.2.0

103060 0o 10101030

1.3.6.1.2.1.17.1.4.1.1

1.3.6.1.2.1.17.1.4.1.2

The type of mapping. Setting this object
to the value invalid(2) has the effect of
invalidating the corresponding entry
in the ipNetToMediaTable.

That is, it effectively dissasociates the
interface identified with said entry
from the mapping identified with said
entry.

It is an implementation-specific matter
as to whether the agent removes an
invalidated entry from the table.
Accordingly, management stations
must be prepared to receive tabular
information from agents that
corresponds to entries not currently in
use.

Proper interpretation of such entries
requires examination of the relevant
ipNetToMediaType object.

Description

The MAC address used by this bridge
when it must be referred to in a
unique fashion.

It is recommended that this be the
numerically smallest MAC address of
all ports that belong to this bridge.
However it is only required to be
unique.

When concatenated with
dot1dStpPriority a unique
Bridgeldentifier is formed which is
used in the Spanning Tree Protocol.

The number of ports controlled by this
bridging entity.

Indicates what type of bridging this
bridge can perform.

If a bridge is actually performing a
certain type of bridging this will be
indicated by entries in the port table
for the given type.

The port number of the port for which
this entry contains bridge management
information.

The value of the instance of the ifIndex
object, defined in MIB-II, for the
interface corresponding to this port.

dot1dStpProtocolSpecification

dot1dStpPriority .

dot1dStpDesignatedRoot .

dot1dStpRootCost .

dot1dStpRootPort .

dot1dStpPort .

dot1dStpPortPriority .

dot1dStpPortState .

dot1dStpPortEnable

.1.3.6.1.2.1.17.2.1.0

o 190 Tol

.15.1.2

0190103

.1.3.6.1.2.1.17.2.15.1.4

An indication of what version of the
Spanning Tree Protocol is being run.
The value decLb100(2) indicates the
DEC LANDridge 100 Spanning Tree
protocol.

IEEE 802.1d implementations will
return ieee8021d(3).

If future versions of the IEEE Spanning
Tree Protocol are released that are
incompatible with the current version
a new value will be defined.

The value of the writeable portion of
the Bridge ID, i.e., the first two octets of
the (8 octet long) Bridge ID.

The other (last) 6 octets of the Bridge ID
are given by the value of
dot1dBaseBridgeAddress.

The bridge identifier of the root of the
spanning tree as determined by the
Spanning Tree Protocol as executed by
this node.

This value is used as the Root Identifier
parameter in all configuration Bridge
PDUs originated by this node.

The cost of the path to the root as seen
from this bridge.

The port number of the port which
offers the lowest cost path from this
bridge to the root bridge.

The port number of the port for which
this entry contains Spanning Tree
Protocol management information.

The value of the priority field which is
contained in the first (in network byte
order) octet of the (2 octet long) Port
ID.

The other octet of the Port ID is given
by the value of dot1dStpPort.

The port’s current state as defined by
application of the Spanning Tree
Protocol.

This state controls what action a port
takes on reception of a frame.

If the bridge has detected a port that is
malfunctioning it will place that port
into the broken(6) state.

For ports which are disabled (see
dot1dStpPortEnable), this object will
have a value of disabled(1).

The enabled/disabled status of the port.

142

dot1dStpPortPathCost

dot1dStpPortDesignatedRoot

dot1dStpPortDesignatedCost

dot1dStpPortDesignatedBridge

dot1dStpPortDesignatedPort

dot1dTpFdbAddress

dot1dTpFdbPort

143

1.3.6.1.2.1.17.2.15.1.5

1036601080010l 15a1.6

1.3.6.1.2.1.17.2.15.1.7

103000102010 1702015: 108

1.3.6.1.2.1.17.2.15.1.9

1.3.6.1.2.1.17.4.3.1.1

1.3.6.1.2.1.17.4.3.1.2

The contribution of this port to the
path cost of paths towards the
spanning tree root which include this
port.

802.1D-1990 recommends that the
default value of this parameter be in
inverse proportion to the speed of the
attached LAN.

The unique Bridge Identifier of the
Bridge recorded as the Root in the
Configuration BPDUs transmitted by
the Designated Bridge for the segment
to which the port is attached.

The path cost of the Designated Port of
the segment connected to this port.
This value is compared to the Root
Path Cost field in received bridge
PDUs.

The Bridge Identifier of the bridge
which this port considers to be the
Designated Bridge for this port’s
segment.

The Port Identifier of the port on the
Designated Bridge for this port’s
segment.

A unicast MAC address for which the
bridge has forwarding and/or filtering
information.

Either the value '0', or the port number
of the port on which a frame having a
source address equal to the value of
the corresponding instance of
dot1dTpFdbAddress has been seen.

A value of '0' indicates that the port
number has not been learned but that
the bridge does have some
forwarding/filtering information about
this address (e.g. in the
dotldStaticTable).

Implementors are encouraged to
assign the port value to this object
whenever it is learned even for
addresses for which the corresponding
value of dot1dTpFdbStatus is not
learned(3).

dot1dTpFdbStatus

.1.3.6.1.2.1.17.4.3.1.3

Table 73. Supported OIDS from the Q-BRIDGE-MIB

Name

dot1qTpFdbPort

OID
0 108a@010daTall ol o0doda ol

The status of this entry.
The meanings of the values are:

other(1): none of the following.
This would include the case where
some other MIB object (not the
corresponding instance of
dot1dTpFdbPort, nor an entry in the
dot1dStaticTable) is being used to
determine if and how frames
addressed to the value of the
corresponding instance of
dot1dTpFdbAddress are being
forwarded.

invalid(2): this entry is not longer
valid (e.g., it was learned but has since
aged-out), but has not yet been flushed
from the table.

learned(3): the value of the
corresponding instance of
dotldTpFdbPort was learned, and is
being used.

self(4): the value of the corresponding
instance of dot1dTpFdbAddress
represents one of the bridge’s
addresses.

The corresponding instance of
dotldTpFdbPort indicates which of the
bridge’s ports has this address.

mgmt(5): the value of the
corresponding instance of
dot1dTpFdbAddress is also the value of
an existing instance of
dotldStaticAddress.

Description

Either the value 0, or the port number
of the port on which a frame having a
source address equal to the value of
the corresponding instance of
dot1qTpFdbAddress has been seen.

A value of 0 indicates that the port
number has not been learned but that
the device does have some
forwarding/filtering information about
this address (e.g., in the
dot1qStaticUnicastTable).
Implementors are encouraged to
assign the port value to this object
whenever it is learned, even for
addresses for which the corresponding
value of dot1qTpFdbStatus is not
learned(3).

144

dot1qTpFdbStatus .1.3.6.1.2.1.17.7.1.2.2.1.3 The status of this entry.
The meanings of the values are:

other(1): none of the following.

This may include the case where some
other MIB object (not the
corresponding instance of
dot1qTpFdbPort, nor an entry in the
dot1qStaticUnicastTable) is being used
to determine if and how frames
addressed to the value of the
corresponding instance of
dot1qTpFdbAddress are being
forwarded.

invalid(2): this entry is no longer valid
(e.g., it was learned but has since aged
out), but has not yet been flushed from
the table.

learned(3): the value of the
corresponding instance of
dot1qTpFdbPort was learned and is
being used.

self(4): the value of the corresponding
instance of dot1qTpFdbAddress
represents one of the device’s
addresses.

The corresponding instance of
dot1qTpFdbPort indicates which of the
device’s ports has this address.

mgmt(5): the value of the
corresponding instance of
dot1qTpFdbAddress is also the value of
an existing instance of
dot1qStaticAddress.

Generic information about the bridge link discovery process can be found in the Bridge Information box on the Node Detail

Page of the device. Information gathered from this OID will be stored in the following database table:

145

B Brdgespin_oded

briggemaclink

i _brdgemacink_nodexd

B Jpne momedia_saurcenaded

Figure 15. Database tables related to transparent bridge discovery

6.3. Layer 3 Link Discovery

With Enlinkd it is possible to get Links based on network routing applications. The following routing daemons can be used
to provide a discovery of links based Layer 3 information:

* Open Shortest Path First (OSPF)
» Intermediate System to Intermediate System (IS-IS)

This information is provided by SNMP Agents with appropriate MIB support. For this reason it is required to have a
working SNMP configuration running. The link data discovered from Enlinkd is provided in the Topology User Interface
and on the detail page of a node.

6.3.1. OSPF Discovery

The relevant MIBs for OSPF topology are OSPF-MIB and OSPF-TRAP-MIB. In these MIBs are defined the relevant objects
used to find OSPF links, specifically:

* The Router ID which, in OSPF, has the same format as an IP address
* But identifies the router independent of its IP address.

Also all the interfaces are identified by their IP addresses. The OSPF links come from the SNMP ospfNbrTable defined in
OSPF-MIB and this table is in practice persisted in the ospfLink table:

Table 74. Supported OIDs from OSPF-MIB

146

https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/IS-IS

Name

ospfRouterld

ospfAdminStat

ospfVersionNumber

ospfAreaBdrRtrStatus

ospfAreaASBdrRtrStatus

ospfIflpAddress

ospfAddressLessIf

ospfNbrIpAddr

ospfNbrAddressLessIndex

ospfNbrRtrId

Table 75. Supported OIDs from IP-MIB

147

OID

.1.3.6.1.2.1.14.1.1.0

010300000 ko a2l

.1.3.0

.1.4.0

.1.5.0

50a1at

.7.1.2

.10.1.1

.10.1.2

.10.1.3

Description

A 32-bit integer uniquely identifying
the router in the Autonomous System.
By convention, to ensure uniqueness,
this should default to the value of one
of the router’s IP interface addresses.
This object is persistent and when
written the entity should save the
change to non-volatile storage.

The administrative status of OSPF in
the router.

The value enabled denotes that the
OSPF Process is active on at least one
interface; disabled disables it on all
interfaces.

This object is persistent and when
written the entity should save the
change to non-volatile storage.

The current version number of the
OSPF protocol is 2.

A flag to note whether this router is an
Area Border Router.

A flag to note whether this router is
configured as an Autonomous System
Border Router.

This object is persistent and when
written the entity should save the
change to non-volatile storage.

The IP address of this OSPF interface.

For the purpose of easing the
instancing of addressed and
addressless interfaces; this variable
takes the value 0 on interfaces with IP
addresses and the corresponding value
of ifIndex for interfaces having no IP
address.

The IP address this neighbor is using in
its IP source address.

Note that, on addressless links, this will
not be 0.0.0.0 but the address of
another of the neighbor’s interfaces.

On an interface having an IP address,
Zero.

On addressless interfaces, the
corresponding value of ifIndex in the
Internet Standard MIB.

On row creation, this can be derived
from the instance.

A 32-bit integer (represented as a type
IpAddress) uniquely identifying the
neighboring router in the Autonomous
System.

Name (0)0)] Description

ipAdEntIfIndex .1.3.6.1.2.1.4.20.1.2 The index value which uniquely
identifies the interface to which this
entry is applicable.
The interface identified by a particular
value of this index is the same
interface as identified by the same
value of the IF-MIB’s ifIndex.

ipAdEntNetMask .1.3.6.1.2.1.4.20.1.3 The subnet mask associated with the
IPv4 address of this entry.
The value of the mask is an IPv4
address with all the network bits set to
1 and all the hosts bits set to 0.

Generic information about the OSPF link discovery process can be found in the OSPF Information box on the Node Detail

Page of the device. Information gathered from these OIDs will be stored in the following database table:

ospflink
P WTEGER
nodels MTEGER
axplpadls CHARACTER VARVINGI(18) fic_ospfink_nadeid node
coplpmask CHARACTER VARYINGI16) wreaEn
coplatdmasiessidas INTEGER TIMESTAMP(E) WITH TIME Z0NE
aspitincax NTEGER TeGER
[re— CHARACTER VARVING(18) cmaacTERN)
oaprempacr CHARACTER VARYINGI(18) CHARACTER VARYNGESE)
ospremasaressisssingsx WTEGER
osplinkcreateime TRESTAMPE) WITH TIWE ZONE
TMEETAMPE WITH TIME ZONE

CHARACTER VARYING256)
CHARACTER VARYING256)
n CHARACTER VARVINGRSS)
1 CHARACTER VARYING2SE)
CHARACTER VARY INGEEE)
o CHARMCTER()
CHARACTER VARYING(18)

fu wTEGER

noceia WEGER

osprouena CUARACTER VARY NG 16) fk_ospfelement nodeid
ospaaminsat WEGER
ospversiomumser NTEGER
ospbarestaus WTEGER
ospasbanisans NTEGER

OSPIOUENNAMISK CHARACTER VARYING16)
TEGeR

CHARACTER VARYING(1 8]
CHARACTER VARVINGEE)
TIMESTAMP(&) WITH TIIE ZOHE
CHARACTER VARY INGES)
CHARACTER VARYINGIE4)

ospmogecreatime TIMESTAMPS) WITH TIME Z0NE
TIMESTAMP) WITH TIME ZDNE

Figure 16. Database tables related to OSPF discovery

6.3.2. IS-IS Discovery

IS-IS Links are found in the isisISAdjTable that is defined in ISIS-MIB (mib-rfc4444.txt). In this table is found the information
needed to find the Adjacency Intermediate System. The information about IS-IS is stored into two tables: isisElement and
isisLink. isisElement contains the ISISSysID, a unique identifier of the "Intermediate System" (the name for the Router in
ISO protocols). Each entry in this SNMP MIB table represents a unidirectional link from the Intermediate System that is
queried to the Adjacent Intermediate Systems running IS-IS and "peering" with the source router. If two routers IS-A and IS-
B support ISIS-MIB, then EnLinkd will create two link entries in OpenNMS: one from IS-A to IS-B (from the adjtable of IS-A)
the complementary link back from IS-B to IS-A (from the adjTable of _IS-B). IS-IS links are represented in the ISIS-MIB as
follows:

Table 76. Supported OIDs from ISIS-MIB
Name (0)0)] Description

isisSysID .1.3.6.1.2.1.138.1.1.1.3.0 The ID for this Intermediate System.
This value is appended to each of the
area addresses to form the Network
Entity Titles.
The derivation of a value for this object
is implementation specific.
Some implementations may
automatically assign values and not
permit an SNMP write, while others
may require the value to be set
manually.
Configured values must survive an
agent reboot.

148

Name OID

isisSysAdminState .1.3.6.1.2.1.138.1.1.1.8.0
isisSysObject o1 06BaTloallo THBoDao1

isisCirclfIndex .1.3.6.1.2.1.138.1.3.2.1.2
isisCircAdminState .1.3.6.1.2.1.138.1.3.2.1.3
isisISAdjState .1.3.6.1.2.1.138.1.6.1.1.2
isisISAdjNeighSNPAAddress .1.3.6.1.2.1.138.1.6.1.1.4
isisISAdjNeighSysType .1.3.6.1.2.1.138.1.6.1.1.5
isisISAdjNeighSysID NI FSHGNTIAIINS SN HGAINTNG
isisISAdjNbrExtendedCircID .1.3.6.1.2.1.138.1.6.1.1.7

Description

The administrative state of this
Intermediate System.

Setting this object to the value on when
its current value is off enables the
Intermediate System.

Configured values must survive an
agent reboot.

isisSysObject

The value of ifIndex for the interface to
which this circuit corresponds.

This object cannot be modified after
creation.

The administrative state of the circuit.
The state of the adjacency.

The SNPA address of the neighboring
system.

The type of the neighboring system.

The system ID of the neighboring
Intermediate System.

The 4-byte Extended Circuit ID learned
from the Neighbor during 3-way
handshake, or 0.

Generic information about the IS-IS link discovery process can be found in the IS-IS Information box on the Node Detail

Page of the device. Information gathered from this OIDs will be stored in the following database table:

isislink
7 INTEGER
nodeld INTEGER
S e fiisislink_nodeid node

Isisisagjindex INTEGER
siscrotndox INTEGER
isisereadminstate INTEGER
Isisisadjsiate INTEGER

CHARAGH
Isisisadjneignsystype INTEGER

CHARACH
Islsisadjnbrextendedelrcld INTEGER

INTEGER
TIMESTAMP(S) WITH TIME ZONE
INTEGER

CHARACTER(1)

CHARACTER VARYING (256)

CHARACTER VARYING (256)
N GHARAGTER VARYING(256)
N CHARAGTER VARYING(Z56)
CHARACTER VARYING (256)
CHARACTER VARYING (256)
CHARAGTER()
CHARAGTER VARYING(16)

TIME ZONE
TIME ZONE

CHARACTER VARYING(16)
CHARACTER VARYING (54)
TIMESTAMP(5) WITH TIME ZON

Fu INTEGER
nodsia INTEGER
Isissysid CHARACTER VARYING(32) fi_isiselement_nodeid
Isissysaaminstate INTEGER
Isisnodecreatetime TIVESTAMP(6) WITH TIME ZONE
Isisnodslastpolitme _ TIVESTAMP(E) WITH TIME ZONE

GHARAGTER VARYING (54)
CHARACTER VARYING (54)

Figure 17. Database tables related to IS-IS discovery

149

Chapter 7. Operation

7.1. HTTPS / SSL

This chapter covers the possibilities to configure OpenNMS to protect web sessions with HTTPS and also explains how to

configure OpenNMS to establish secure connections.

NOTE In order to use HTTPS the Java command line tool keytool is used. It is automatically shipped with
each JRE installation. =~ More details about the keytool can be found at the official documentation.

7.1.1. Standalone HTTPS with Jetty

To configure OpenNMS to protect web sessions with HTTPS please refer to the official OpenNMS Wiki article Standalone
HTTPS with Jetty.

7.1.2. OpenNMS as HTTPS client

To establish secure HTTPS connections within Java one has to setup a so called Java Trust Store.

The Java Trust Store contains all certificates a Java application should trust when making connections as a client to a

SEerver.

Setup Java Trust Store

To setup the Java Trust Store the following command can be issued.
NOTE If you do not have a Java Trust Store setup yet, it is created automatically.
Import a certificate to the Java Trust Store

keytool \
-import \ <1>
-v o\ <2>
-trustcacerts \ <3>
-alias localhost \ <4>
-file localhost.cert \ <5>
-keystore /$OPENNMS_HOME/etc/trust-store.jks <6>

Define to import a certificate or a certificate chain
Use verbose output
Define to trust certificates from cacerts

The alias for the certificate to import, e.g. the common name

© ® © © ©

The certificate to import

® The location of the Java Trust Store

If you create a new Java Trust Store you are asked for a password to protect the Java Trust Store. If you update an already

existing Java Trust Store please enter the password you chose when creating the Java Trust Store initially.

Download existing public certificate

To Download an existing public certificate the following command can be issued.

150

https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://www.opennms.org/wiki/Standalone_HTTPS_with_Jetty
http://www.opennms.org/wiki/Standalone_HTTPS_with_Jetty

Download an existing public certificate

openssl \
s_client \ <1>
-showcerts \ <2>
-connect localhost:443 \ <3>
-servername localhost \ <4>
< /dev/null \ <5>
> localhost.cert <6>

Use SSL/TLS client functionality of openssl.
Show all certificates in the chain

PORT:HOST to connect to, e.g. localhost:443

® @ ©® O

This is optional, but if you are serving multiple certificates under one single ip address you may define a server name,
otherwise the ip of localhost:PORT certificate is returned which may not match the requested server name

(mail.domain.com, opennms.domain.com, dns.domain.com)
® No input

® Where to store the certificate.

Configure OpenNMS to use the defined java Trust Store

To setup OpenNMS to use the defined Java Trust Store the according javax.net.ssl.trustStore* properties have to be set.
Open $OPENNMS_HOME/etc/opennms.properties and add the properties javax.net.ssl.trustStore and

javax.net.ssl.trustStorePassword as shown below.
$OPENNMS_HOME/etc/opennms.properties snippet to define a Java Trust Store

javax.net.ssl.trustStore=/$0PENNMS_HOME/etc/trust-store.jks
javax.net.ssl.trustStorePassword=change-me

@ The location of the Java Trust Store

@ The password of the Java Trust Store
For more details on the Java build-in SSL System properties have a look at chapter Debugging / Properties.

NOTE Each time you modify the Java Trust Store you have to restart OpenNMS to have the changes take effect.

7.1.3. Differences between Java Trust Store and Java Key Store

The Java Trust Store is used to determine whether a remote connection should be trusted or not, e.g. whether a remote

party is who it claims to be (client use case).

The Java Key Store is used to decide which authentication credentials should be sent to the remote host for authentication

during SSL handshake (server use case).

For more details, please check the JSSE Reference Guide.

7.1.4. Debugging / Properties

If you encounter issues while using HTTPS it might be useful to enable debugging or use one of the build-in Java System

Properties to configure the proper use of SSL.

151

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#Stores

Table 77. Java build-in System Properties (Source)
System Property Name Description

javax.net.ssl.keyStore Location of the Java keystore file containing an application
process’s own certificate and private key.
On Windows, the specified pathname must use forward
slashes, /, in place of backslashes, \.

javax.net.ssl.keyStorePassword Password to access the private key from the keystore file
specified by javax.net.ssl.keyStore.
This password is used twice: to unlock the keystore file
(store password) and to decrypt the private key stored in
the keystore (key password).
In other words, the JSSE framework requires these
passwords to be identical.

javax.net.ssl.keyStoreType (Optional) For Java keystore file format, this property has
the value jks (or JKS). You do not normally specify this
property, because its default value is already jks.

javax.net.ssl.trustStore Location of the Java keystore file containing the collection
of CA certificates trusted by this application process (trust
store). On Windows, the specified pathname must use
forward slashes, /, in place of backslashes, \.
If a trust store location is not specified using this property,
the Sun JSSE implementation searches for and uses a
keystore file in the following locations (in order):

$JAVA_HOME/11ib/security/jssecacerts and
$JAVA_HOME/1ib/security/cacerts

javax.net.ssl.trustStorePassword Password to unlock the keystore file (store password)
specified by javax.net.ssl.trustStore.

javax.net.ssl.trustStoreType (Optional) For Java keystore file format, this property has
the value jks (or JKS). You do not normally specify this
property, because its default value is already jks.

javax.net.debug To switch on logging for the SSL/TLS layer, set this property
to ssl. More details about possible values can be found here.

7.2. resourcecli: simple resource management tool

Sometimes a user want to list or manually delete collected data (resources) of an OpenNMS instance. When using RRDTool-
or JRobin-based storage this can easily be achieved by traversing the share/rrd directory and its subdirectories. The several
.rrd or .jrb files can be listed or deleted for individual nodes. When Newts-based storage is used the data is stored and
indexed remotely on a Cassandra cluster. In this case the cluster must be queried for available resources. For the deletion
of resources the data and all generated indexes must be gathered and removed. The resourcecli tool simplifies this process

and works with Newts-based storage as well as with RRDTool and JRobin files.

7.2.1. Usage

The utility is installed by default and its wrapper script is located in the ${0PENNMS_HOME}/bin directory.

$ cd /path/to/opennms/bin
$./resourcecli

TIP When invoked without parameters the usage and help information is printed.

The resourcecli tool uses sub-commands for the different tasks. Each of these sub-commands provide different options and

152

https://access.redhat.com/documentation/en-US/Fuse_MQ_Enterprise/7.1/html/Security_Guide/files/SSL-SysProps.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#Debug

parameters. The command line tool accepts the following sub-commands.

Sub-command Description

list Queries a OpenNMS server for available resources.
show Displays details for a given resource.

delete

Deletes a given resource and all of its child resources.

The following global options are available in each of the sub-commands of the tool:

Option/Argument Description Default

--help Displays help and exit false

--username VALUE Username for connecting to OpenNMS admin

--password VALUE Password for connecting to OpenNMS admin

--url VALUE URL of the OpenNMS instance to http://localhost:8980/opennms
connect to

7.2.2. Sub-command: list

This sub-command is used to query a OpenNMS instance for its available resources. The following example queries the

local OpenNMS instance with the credentials admin/secret.

$./resourcecli --username admin --password secret list
node[72]
node[72].nodeSnmp[]
node[72].responseTime[192.168.0.2]
node[70]
node[70].nodeSnmp[]
node[70].interfaceSnmp[bridged]
node[70].interfaceSnmp[bridge1]
node[70].interfaceSnmp[v1an@-002500fe1bf3]
node[70].responseTime[50.16.15.18]
node[70].responseTime[192.168.0.1]

<output omitted>

7.2.3. Sub-command: show

This sub-command can be used to show details for a given resource. The following example display details for the resource
identified by resourceld node[70].

153

http://localhost:8980/opennms

$./resourcecli --username admin --password secret show node\[70\]

NDE node[70]

Name: 70

Label: MyRouter

Type: Node

Link: element/node.jsp?node=70
Parent ID: null

Children:

node[70].nodeSnmp[]

node[70].interfaceSnmp[bridged]

node[70].interfaceSnmp[bridge1]

node[70].interfaceSnmp[v1an0-002500fe1bf3]
node[70].responseTime[50.16.15.18]

node[70].responseTime[192.168.0.1]
Attributes:

External:

Graphs:

Strings:

The following options are available for the show sub-command.

Option/Argument Description Default
<resource> The resourceld of the resource to -
display.

7.2.4. Sub-command: delete

This sub-command can be used to delete a given resource and its child resources. The following example deletes the

resource identified by resourceld node[70]. When successful, this command does not generate any output.

$./resourcecli --username admin --password secret delete node\[70\]

$

The following options are available for the delete sub-command.

Option/Argument Description Default

<resource> The resourceld of the resource to be -
deleted.

7.3. Newts

This section describes how to configure OpenNMS to use Newts and how to use OpenNMS to monitor your Cassandra

cluster.

7.3.1. Configuration

Enabling Newts

OpenNMS can be configured to use Newts by setting the following property in in ${OPENNMS_HOME}/etc/opennms.properties:

org.opennms.timeseries.strategy=newts

154

It is also highly recommended that resources stored in Newts are referenced by their foreign source and foreign ID, as

opposed to their database ID. To this end, the following property should also be set in the same file:

org.opennms.rrd.storeByForeignSource=true

With these set, OpenNMS will begin persisting metrics using the Newts engine when restarted.

Additional configuration options are presented in the next section.

Configuration Reference

The following properties, found in ${OPENNMS_HOME}/etc/opennms.properties, can be used to configure and tune Newts.

General
Name Default Description
org.opennms.newts.config.keyspace newts Name of the keyspace to use.
org.opennms.newts.config.hostname localhost IP address or hostnames of the
Cassandra nodes. Multiple hosts can be
separated by a comma.
org.opennms.newts.config.port 9042 CQL port used to connect to the
Cassandra nodes.
org.opennms.newts.config.username cassandra Username to use when Connceting to
Cassandra via CQL.
org.opennms.newts.config.password cassandra Password to use when connceting to
Cassandra via CQL.
org.opennms.newts.config.read_consist ONE Consistency level used for read
ency operations.
See Configuring data consistency for a
list of available options.
org.opennms.newts.config.write_consis ANY Consistency level used for write
tency operations.
See Configuring data consistency for a
list of available options.
org.opennms.newts.config.max_batch_si 16 Maximum number of records to insert
s in a single transaction. Limited by the
size of the Cassandra cluster’s
batch_size_fail threshold_in_kb
property.
org.opennms.newts.config.ring_buffer_ 8192 Maximum number of records that can
s1ze be held in the ring buffer. Must be a
power of two.
org.opennms.newts.config.ttl 31540000 Number of seconds after which
samples will automatically be deleted.
Defaults to one year.
org.opennms.newts.config.resource_sha 604800 Duration in seconds for which samples
rd will be stored at the same key. Defaults
to 7 days in seconds.
org.opennms.newts.query.minimum_step 30000 Minimum step size in milliseconds.

Used to prevent large queries.

155

http://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_config_consistency_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_config_consistency_c.html

Name Default Description

org.opennms.newts.query.interval_divi 2 If no interval is specified in the query,
der the step will be divided into this many
intervals when aggregating values.

org.opennms.newts.query.heartbeat 450000 Duration in milliseconds. Used when
no heartbeat is specified. Should
generally be 1.5x your smallest
collection interval.

org.opennms.newts.query.parallelism Number of cores Maximum number of threads that can
be used to compute aggregates.
Defaults to the number of available

cores.
org.opennms.newts.config.cache.strate See bellow Canonical name of the class used for
9y resource level caching. See the table

bellow for all of the available options.

org.opennms.newts.config.cache.max_en 8192 Maximum number of records to keep
tries in the cache when using an in-memory
caching strategy.

Available caching strategies include:
Name Class Default
In-Memory Cache org.opennms.netmgt.newts.support.Guav y

aSearchableResourceMetadataCache

Redis Cache

When enabled, the following options can be used to configure the Redis-based cache.

Name Default Description
org.opennms.newts.config.cache.redis_ localhost IP address of hostname of the Redis
hostname server
org.opennms.newts.config.cache.redis_ 6379 TCP port used to connect to the Redis
puris server.
Recommendations

You will likely want to change the values of cache.max_entries and the ring_buffer_size to suit your installation.

Meta-data related to resources are cached in order to avoid writing redundant records in Cassandra. If you are collecting
data from a large number of resources, you should increase the cache.max_entries to reflect the number of resources you
are collecting from, with a suitable buffer.

The samples gathered by the collectors are temporarily stored in a ring buffer before they are persisted to Cassandra using
Newts. The value of the ring_buffer_size should be increased if you expect large peaks of collectors returning at once or
latency in persisting these to Cassandra. However, note that the memory used by the ring buffer is reserved, and larger

values may require an increased heap size.

7.3.2. Cassandra Monitoring

This section describes some of the metrics OpenNMS collects for monitoring an Cassandra database infrastructure. To

enable the data collection, the node has to be in the Surveillance Category named Cassandra21.

156

The data collection is bound to the agent IP interface with the service name JMX-Cassandra. The JMXCollector is used to

retrieve the MBean entities from the Cassandra node.

Client Connections

The number of active client connections from org.apache.cassandra.metrics.Client are collected:

Name Description
connectedNativeClients Metrics for connected native clients
connectedThriftClients Metrics for connected thrift clients

Compaction Bytes

The following compaction manager metrics from org.apache.cassandra.metrics.Compaction are collected:

Name Description
BytesCompacted Number of bytes compacted since node started
Compaction Tasks

The following compaction manager metrics from org.apache.cassandra.metrics.Compaction are collected:

Name Description
CompletedTasks Estimated number of completed compaction tasks
PendingTasks Estimated number of pending compaction tasks

Storage Load

The following storage load metrics from org.apache.cassandra.metrics.Storage are collected:

Name Description

Load Total disk space (in bytes) used by this node

Storage Exceptions

The following storage exception metrics from org.apache.cassandra.metrics.Storage are collected:

Name Description

Exceptions Number of unhandled exceptions since start of this
Cassandra instance

Dropped Messages

Measurement of messages that were DROPPABLE. These ran after a given timeout set per message type so was thrown
away. In JMX these are accessible via org.apache.cassandra.metrics.DroppedMessage. The number of dropped messages in

the different message queues are good indicators whether a cluster can handle its load.

157

Name Stage Description

Mutation MutationStage If a write message is processed after its
timeout (write_request_timeout_in_ms)
it either sent a failure to the client or it
met its requested consistency level and
will relay on hinted handoff and read
repairs to do the mutation if it
succeeded.

Counter_Mutation MutationStage If a write message is processed after its
timeout (write_request_timeout_in_ms)
it either sent a failure to the client or it
met its requested consistency level and
will relay on hinted handoff and read
repairs to do the mutation if it
succeeded.

Read_Repair MutationStage Times out after
write_request_timeout_in_ms.

Read ReadStage Times out after
read_request_timeout_in_ms.
No point in servicing reads after that
point since it would of returned error
to client.

Range_Slice ReadStage Times out after
range_request_timeout_in_ms.

Request_Response RequestResponseStage Times out after
request_timeout_in_ms.
Response was completed and sent back
but not before the timeout

Thread pools

Apache Cassandra is based on a so called Staged Event Driven Architecture (SEDA). This seperates different operations in
stages and these stages are loosely coupled using a messaging service. Each of these components use queues and thread
pools to group and execute their tasks. The documentation for Cassandra Thread pool monitoring is originated from

Pythian Guide to Cassandra Thread Pools.

Table 78. Collected metrics for Thread Pools

Name Description
ActiveTasks Tasks that are currently running
CompletedTasks Tasks that have been completed
CurrentlyBlockedTasks Tasks that have been blocked due to a full queue
PendingTasks Tasks queued for execution

Memtable FlushWriter

Sort and write memtables to disk from org.apache.cassandra.metrics.ThreadPools. A vast majority of time this backing up is
from over running disk capability. The sorting can cause issues as well however. In the case of sorting being a problem, it is
usually accompanied with high load but a small amount of actual flushes (seen in cfstats). Can be from huge rows with
large column names, i.e. something inserting many large values into a CQL collection. If overrunning disk capabilities, it is

recommended to add nodes or tune the configuration.

TIP Alerts: pending > 15 | | blocked > 0

158

http://www.pythian.com/blog/guide-to-cassandra-thread-pools

Memtable Post Flusher

Operations after flushing the memtable. Discard commit log files that have had all data in them in sstables. Flushing non-cf

backed secondary indexes.

TIP Alerts: pending > 15 | | blocked > 0

Anti Entropy Stage

Repairing consistency. Handle repair messages like merkle tree transfer (from Validation compaction) and streaming.

TIP Alerts: pending > 15 | | blocked > 0

Gossip Stage

Post 2.0.3 there should no longer be issue with pending tasks. Instead monitor logs for a message:

Gossip stage has {} pending tasks; skipping status check ...

Before that change, in particular older versions of 1.2, with a lot of nodes (100+) while using vnodes can cause a lot of CPU
intensive work that caused the stage to get behind. Been known to of been caused with out of sync schemas. Check NTP

working correctly and attempt nodetool resetlocalschema or the more drastic deleting of system column family folder.

TIP Alerts: pending > 15 | | blocked > 0

Migration Stage

Making schema changes

TIP Alerts: pending > 15 | | blocked > 0

MiscStage

Snapshotting, replicating data after node remove completed.

TIP Alerts: pending > 15 | | blocked > 0

Mutation Stage

Performing a local including:

* insert/updates

* Schema merges

* commit log replays

* hints in progress

Similar to ReadStage, an increase in pending tasks here can be caused by disk issues, over loading a system, or poor tuning.
If messages are backed up in this stage, you can add nodes, tune hardware and configuration, or update the data model

and use case.

TIP Alerts: pending > 15 | | blocked > 0

159

Read Stage

Performing a local read. Also includes deserializing data from row cache. If there are pending values this can cause
increased read latency. This can spike due to disk problems, poor tuning, or over loading your cluster. In many cases (not

disk failure) this is resolved by adding nodes or tuning the system.
TIP Alerts: pending > 15 | | blocked > 0

Request Response Stage

When a response to a request is received this is the stage used to execute any callbacks that were created with the original

request.
TIP Alerts: pending > 15 | | blocked > 0

Read Repair Stage

Performing read repairs. Chance of them occurring is configurable per column family with read_repair_chance. More likely
to back up if using CL.ONE (and to lesser possibly other non-CL.ALL queries) for reads and using multiple data centers. It will
then be kicked off asynchronously outside of the queries feedback loop. Note that this is not very likely to be a problem
since does not happen on all queries and is fast providing good connectivity between replicas. The repair being droppable
also means that after write_request_timeout_in_ms it will be thrown away which further mitigates this. If pending grows

attempt to lower the rate for high read CFs.

TIP Alerts: pending > 15 | | blocked > 0

JVM Metrics
Some key metrics from the running Java virtual machine are also collected:

java.lang:type=Memory

The memory system of the Java virtual machine. This includes heap and non-heap memory

java.lang:type=GarbageCollector,name=ConcurrentMarkSweep

Metrics for the garbage collection process of the Java virtual machine

— If you use Apache Cassandra for running Newts you can also enable additional metrics for the Newts
keyspace.

7.3.3. Newts Monitoring

This section describes the metrics OpenNMS collects for monitoring the Newts keyspace from
org.apache.cassandra.metrics.Keyspace on an Cassandra node. To enable the data collection, the node has to be in the

Surveillance Categories named Cassandra21 and Newts.

The data collection is bound to the agent IP interface with the service name JMX-Cassandra-Newts. The JMXCollector is used

to retrieve the MBean entities from the Cassandra node.

All Memory Table Data Size

Name Description

AllMemtablesLiveDataSize Total amount of live data stored in the memtables (2i and
pending flush memtables included) that resides off-heap,
excluding any data structure overhead

160

Name

AllMemtablesOffHeapDataSize

Al1lMemtablesOnHeapDataSize

Memtable Switch Count

Name

MemtableSwitchCount

Memtable Columns Count
Name
MemtableColumnsCount

Memory Table Data Size
Name

MemtablelLiveDataSize

MemtableOffHeapDataSize

MemtableOnHeapDataSize

Read and Write Latency

Name

ReadTotallatency

WriteTotallatency

Range Latency

Name

Rangelatency 99th Percentile
Latency

Name
CasCommitTotallatency
CasPrepareTotallatency

CasProposeTotallatency

161

Description

Total amount of data stored in the memtables (2i and
pending flush memtables included) that resides off-heap.

Total amount of data stored in the memtables (2i and
pending flush memtables included) that resides on-heap.

Description

Number of times flush has resulted in the memtable being
switched out.

Description

Total number of columns present in the memtable.

Description

Total amount of live data stored in the memtable, excluding
any data structure overhead

Total amount of data stored in the memtable that resides
off-heap, including column related overhead and partitions
overwritten.

Total amount of data stored in the memtable that resides
on-heap, including column related overhead and partitions
overwritten.

Description
Local read metrics.

Local write metrics.

Description

Local range slice metrics 99th percentile.

Description

Bloom Filter Disk Space

Name

BloomFilterDiskSpaceUsed

Bloom Filter Off Heap Memory

Name

BloomFilterOffHeapMemoryUsed

Newts Memory Used

Name

CompressionMetadatalffHeapMemoryUsed

IndexSummaryOffHeapMemoryUsed

Pending

Name

PendingCompactions

PendingFlushes

Disk Space

Name

TotalDiskSpaceUsed

LiveDiskSpaceUsed

Description

Disk space used by bloom filter

Description

Off heap memory used by bloom filter

Description
Off heap memory used by compression meta data

Off heap memory used by index summary

Description

Estimate of number of pending compactions for this column
family

Estimated number of tasks pending for this column family

Description

Total disk space used by SSTables belonging to this column
family including obsolete ones waiting to be garbage
collected.

Disk space used by SSTables belonging to this column family

162

	Administrators Guide
	Table of Contents
	Chapter 1. Administrative Webinterface
	1.1. Grafana Dashboard Box
	1.2. Operator Board
	1.2.1. Configuration
	1.2.2. Dashlets
	1.2.3. Boosting Dashlet
	1.2.4. Criteria Builder

	1.3. JMX Configuration Generator
	1.3.1. Web based utility
	1.3.2. CLI based utility

	1.4. Heatmap

	Chapter 2. Service Assurance
	2.1. Service monitors
	2.1.1. AvailabilityMonitor
	2.1.2. BgpSessionMonitor
	2.1.3. BSFMonitor
	2.1.4. CiscoIpSlaMonitor
	2.1.5. CiscoPingMibMonitor
	2.1.6. CitrixMonitor
	2.1.7. DhcpMonitor
	2.1.8. DiskUsageMonitor
	2.1.9. DnsMonitor
	2.1.10. DNSResolutionMonitor
	2.1.11. FtpMonitor
	2.1.12. HostResourceSwRunMonitor
	2.1.13. HttpMonitor
	2.1.14. HttpPostMonitor
	2.1.15. HttpsMonitor
	2.1.16. IcmpMonitor
	2.1.17. ImapMonitor
	2.1.18. JCifsMonitor
	2.1.19. JDBCMonitor
	2.1.20. JDBCStoredProcedureMonitor
	2.1.21. JDBCQueryMonitor
	2.1.22. JolokiaBeanMonitor
	2.1.23. LdapMonitor
	2.1.24. LdapsMonitor
	2.1.25. MemcachedMonitor
	2.1.26. NetScalerGroupHealthMonitor
	2.1.27. NrpeMonitor
	2.1.28. NtpMonitor
	2.1.29. OmsaStorageMonitor
	2.1.30. OpenManageChassisMonitor
	2.1.31. PercMonitor
	2.1.32. Pop3Monitor
	2.1.33. PrTableMonitor
	2.1.34. RadiusAuthMonitor
	2.1.35. SmbMonitor
	2.1.36. SnmpMonitor
	2.1.37. SshMonitor
	2.1.38. SSLCertMonitor
	2.1.39. StrafePingMonitor
	2.1.40. TcpMonitor
	2.1.41. SystemExecuteMonitor
	2.1.42. VmwareCimMonitor
	2.1.43. VmwareMonitor
	2.1.44. Win32ServiceMonitor
	2.1.45. XmpMonitor

	Chapter 3. Events
	3.1. Anatomy of an Event
	3.2. Sources of Events
	3.3. The Event Bus
	3.4. Events in Action

	Chapter 4. Provisioning
	4.1. Introduction
	4.2. Concepts
	4.2.1. Terminology
	4.2.2. Addressing Scalability

	4.3. Getting Started
	4.3.1. Provisioning the SNMP Configuration
	4.3.2. Automatic Discovery
	4.3.3. Enhanced Directed Discovery

	4.4. Import Handlers
	4.4.1. File Handler
	4.4.2. HTTP Handler
	4.4.3. DNS Handler

	4.5. Provisioning Examples
	4.5.1. Basic Provisioning
	4.5.2. Advanced Provisioning Example

	4.6. Adapters
	4.6.1. DDNS Adapter
	4.6.2. RANCID Adapter

	4.7. Integrating with Provisiond
	4.7.1. Provisioning Groups of Nodes
	4.7.2. Example

	4.8. Provisioning Single Nodes (Quick Add Node)
	4.9. Fine Grained Provisioning Using provision.pl
	4.9.1. Create a new requisition

	4.10. Yet Other API Examples

	Chapter 5. Database Reports
	5.1. Overview
	5.2. Add a custom report
	5.3. Use of Jaspersoft Studio
	5.3.1. Connect to the OpenNMS Database
	5.3.2. Use Measurements Datasource and Helpers

	5.4. Accessing Performance Data
	5.4.1. Fields
	5.4.2. Parameters

	5.5. Helper methods
	5.5.1. Usage of the interface descriptor
	5.5.2. Usage of the node source descriptor
	5.5.3. Usage of the interface descriptor
	5.5.4. Use HTTPS

	5.6. Limitations

	Chapter 6. Enhanced Linkd
	6.1. Enlinkd Daemon
	6.2. Layer 2 Link Discovery
	6.2.1. LLDP Discovery
	6.2.2. CDP Discovery
	6.2.3. Transparent Bridge Discovery

	6.3. Layer 3 Link Discovery
	6.3.1. OSPF Discovery
	6.3.2. IS-IS Discovery

	Chapter 7. Operation
	7.1. HTTPS / SSL
	7.1.1. Standalone HTTPS with Jetty
	7.1.2. OpenNMS as HTTPS client
	7.1.3. Differences between Java Trust Store and Java Key Store
	7.1.4. Debugging / Properties

	7.2. resourcecli: simple resource management tool
	7.2.1. Usage
	7.2.2. Sub-command: list
	7.2.3. Sub-command: show
	7.2.4. Sub-command: delete

	7.3. Newts
	7.3.1. Configuration
	7.3.2. Cassandra Monitoring
	7.3.3. Newts Monitoring

