Developers Guide

Copyright (c) 2015-2019 The OpenNMS Group, Inc.

OpenNMS Horizon 19.0.0-SNAPSHOT, Last updated 2021-05-27 15:47:48 UTC

Table of Contents

1. Setup a development SYStEM d. ...
1.1. Operating System / ENVIFONMENto d...
L2 Installation d.....
1.3, TO0ING . oo 8.....
14, Useful INKS . . 8.....

140, General 8.....
1.4.2.Installation / SEtUD . . . oo 8....
2. Minion development d....
2. 0. INtrodUCHION . d.
2.2, CONAINET . .o a.. ...
2.2.0. Clean Start d....
2.2.2. Karaf EXteNAer 4....

2.3, PaCKagingo S.....
2.3.1. Adding a new feature to the default feature package h.

2.4, GUIAEIINES . .o S... ..
2.4, SBCUNIY . oo 6.

2 D TEStING . o oo 6.....
2.5.0.L0cal TeSHNG . ..ottt a....
2.5, 2. Sy S M TS S . . . o b

3. TOPOIOGY - v v oot f.....

3.1 Info Panel Hems AR
311 ProgrammatiCt
3.1.2. Scriptable 8

3.2, GraphML . d2. ...
3.2.1. Create/Update/Delete GraphML Topology e d3.
3.2.2. Supported AttDULES oo da. ..
3.2.3. FOCUS Strategies . . . oottt ds5. ..
3. 2.4, ICONS . oo ds. ...
3.2.5. Vertex Status Provider de. ..
3.2.6. Edge Status Provider édeb. ..

B 2. 7. LAY S o d7z. ...
3.2.8. BreadCrumbs A9. ..

4. CORS SUPPOI . . ottt e e e e e 23. ...
4.1. Why do I need CORS SUPPOI? ..ottt e e e e e e e 23 ..
4.2. How can | enable CORS SUPPOIt? e e e 23..
4.3. How can | configure CORS SUPPOI? . ..ot e e 23..

B REST APl . 24

5.0 ReST URL . .. 24. . ..

B 2. AUTNENtICAtION . .. 24 ...

5.3, Data format 24. ...
5.4. Standard Parameters 24. ..
5.5. Standard filter examples 25. ..
5.6. HTTP Return CodeSo e e e 26. ..
5.7, 1dentifying ReSOUICESot e e e e 26. ..
5.8. Currently Implemented Interfaces e 27. .
5.8.1. ACKNOWIEAgEMENTS e 27. ..
5.8.2. Alarm SEatiStiCSot 28. ..
5.3, AlaIMIS . o 28. ...
5.8 4. EVENES . . 29. ...
5.8, 5. CalBgONES . . o ot e 80 ..
5.8.6. FOreIgN SOUICES . .. e e e e e e e e a1...
D 8.7 GIOUPS . . oo 82.. ..
.88 Healmap 833, ..
5.8.0. CalegOriES . . o ot e 84. ...
B5.8.10. KSC REPOIMS . . . ottt 85...
B 8. L. M S . oot 85....
5.8.12. Measurements APl 86. . .
B8 L3, NOUES. . o 40. ...
5.8.14. NOtfICAtIONS . . . oo a2 ...
5.8.15. 0utage Timelines e e e 42. ..
B 816, OULAGES . . o . ottt 42, ...
5.8.17. ReqUISIIONS e 43 ...
5.8.18. RESOUICES APl . . . o 45. ..
5.8.19. Realtime Console data 48 ..
5.8.20. Scheduled OUtagesS oo 49. ..
5.8.21. SNMP Configuration &1 ..
58,22, USBrS . . 60. . ..
5.8.23. SNMP Trap Northbounder Interface Configuration — 61
5.8.24. Email Northbounder Interface Configuration oo .. H2.
5.8.25. Javamail Configuration e 64 ..
5.8.26. Syslog Northbounder Interface Configuration ©65.
5.8.27. Business Service MONItOriNgot 66. .
5.8.28. DISCOVEIY ..ttt e 69 ...
5.9. REST APl EXamMPIeS . . .o e gl. ..
5.9.1. Getting Graph data gl. ..
5.9.2. provision.pl examples and NOtES 2. .
5.9.3. Debian (Lenny) NOtES i e 73 ..
5.9.4. Windows Powershell ReST €3 ..

6. Develop DOCUMENtatioN 5. ..

6.1. File Structure in 0pennNMS-AOC i e 5. .

6.2, WHItING . . e e g5, ...
6.2.1. Conventions for text formatting e &6. .
B.2.2. GOMCNAS . . . o oo &b. . ..

6.3. Headings and document StrUCtUre o e 7. .

B.4. LINKS . .o

6.5. Admonitions and useful NOtES €8 ..

B.6. ANIDULES . . . 80. ...

B.7. COMIMENES . . 80. ...

B.8. TabIES . . 80....

6.9. INCIUdE IMaAgES . . . 8Ll ...

6.10. COode SNIPPELS . . 83 ...
6.10.1. Explicitly defined in the document 83 .
6.10.2. Included from an example file e 84. .
6.10.3. Include parts of afile e 84. ..

6.11. Cheat Sheets and additional hints 85. .

6.12. Migrating content from project Wiki e 86. .

7. AMOP INtegration e 89 ...

7.0 EVENt FOrWaIder .o 89...
T L SBIUP . v ottt Q0. ...
7.0.2. DEDUGGING . .ot Q0 ...

7.2, EVENE RECEIVEI . . o Qa ...
0 S T < (] o Ol....
7.2.2. DEDUGOING . .. e QL. ..

7.3. Alarm Northbounder ... Q1. ..
7.3, SBIUP . v ottt 02....
7.3.2. DEDUGOING . .. e o2 ...

7.4, CUSIOM PrOCESSOIS . . o oot e e e e e e e 02. ..

8. Design and Styleguidelines e o4. ..

8.1. Jasper Report GUIdeline e o4. ..

Chapter 1. Setup a development system

This guide describes the requirements and the steps necessary in order to get started with the
development of the OpenNMS project.

1.1. Operating System / Environment

To build/compile OpenNMS it is necessary to run a *nix system. You do not need to run it physically,
a virtual machine is sufficient, but the choice is yours. We recommend one of the following:

¥ Linux Mint with Cinnamon Desktop environment

¥ Ubuntu Desktop

¥ Mac OS X
| This documentation assumes that you chose a debian based desktop
- environment.

1.2. Installation

The next chapter describes the full setup of your environment in order to meet the pre-
requirements. Simply follow these instructions, they may vary depending on your Operating

System.

http://www.linuxmint.com/
http://ubuntu.com

add OpenNMS as repository to install icmp and such

echo "deb http://debian.opennms.org stable main" >
letc/apt/sources.list.d/opennms.list

echo "deb-src http://debian.opennms.org stable main" >>
letc/apt/sources.list.d/opennms.list

Add pgp key

wget -0 - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add -

overall update
apt-get update

install stuff

apt-get install -y software-properties-common
apt-get install -y git-core

apt-get install -y nsis

install Oracle Java 8 JDK

this setup is based on: http://www.webupd8.org/2014/03/how-to-install-oracle-java-8-
in-debian.html

add-apt-repository -y ppa:webupd8team/java

apt-get update

apt-get install -y oracle-java8-installer

apt-get install -y oracle-java8-set-default

install and configure PostgreSQL
apt-get install -y postgresq|

echo "local all postgres peer" >
/etc/postgresql/9.3/main/pg_hba.conf

echo "local all all peer" >>
letc/postgresql/9.3/main/pg_hba.conf

echo "host all all 127.0.0.1/32 trust” >>
letc/postgresql/9.3/main/pg_hba.conf

echo "host all all ::1/128 trust” >>

/etc/postgresql/9.3/main/pg_hba.conf
restart postgres to use new configs
/etc/init.d/postgresql restart

install OpenNMS basic dependencies
apt-get install -y maven

apt-get install -y jicmp jicmp6

apt-get install -y jrrd

clone opennms
mkdir -p ~/dev/opennms
git clone https://github.com/OpenNMS/opennms.git ~/dev/opennms

After this you should be able to build OpenNMS:

cd ~/dev/opennms
Jclean.pl

.Jlcompile.pl -DskipTests
Jassemble.pl -p dir

For more information on how to build OpenNMS from source check this wiki Install from Source

After OpenNMS successfully built, please follow the wiki Running OpenNMS .

1.3. Tooling

We recommend the following toolset:

¥ |IDE: IntelliJ IDEA Ultimate
¥ DB-Tool: DBeaver or Postgres Admin - pgAdmin
¥ Graphing: yEd

¥ Other: atom.io

1.4. Useful links

1.4.1. General

¥ https://www.github.com/OpenNMS/opennms : The source code hosted on GitHub

¥ http://wiki.opennms.org : Our Wiki, especially the start page is of interest. It points you in the
right directions.

¥ http://issues.opennms.org : Our issue/bug tracker.

¥ https://github.com/opennms-forge/vagrant-opennms-dev : A vagrant box to setup a virtual box to
build OpenNMS

¥ https://github.com/opennms-forge/vagrant-opennms : A vagrant box to setup a virtual box to run
OpenNMS

1.4.2. Installation / Setup

¥ http://www.opennms.eu/docs/opennms-community-welcome-guide/0.0.5-SNAPSHOT/
¥ http://www.opennms.org/wiki/Installation:Source

¥ http://www.opennms.org/wiki/Developing_with_Git

¥ http://www.opennms.org/wiki/Eclipse_and_OpenNMS

¥ http://www.opennms.org/wiki/IDEA_and_OpenNMS

http://www.opennms.org/wiki/Installation:Source#Building
http://www.opennms.org/wiki/Installation:Source#Running_OpenNMS
https://www.jetbrains.com/idea/
http://dbeaver.jkiss.org/
http://www.pgadmin.org/
http://www.yworks.com/en/products/yfiles/yed/
http://www.atom.io
https://www.github.com/OpenNMS/opennms
http://wiki.opennms.org
http://issues.opennms.org
https://github.com/opennms-forge/vagrant-opennms-dev
https://github.com/opennms-forge/vagrant-opennms
http://www.opennms.eu/docs/opennms-community-welcome-guide/0.0.5-SNAPSHOT/
http://www.opennms.org/wiki/Installation:Source
http://www.opennms.org/wiki/Developing_with_Git
http://www.opennms.org/wiki/Eclipse_and_OpenNMS
http://www.opennms.org/wiki/IDEA_and_OpenNMS

Chapter 2. Minion development

2.1. Introduction

This guide is intended to help developers get started with writing Minion related features. It is not
intented to be an exhaustive overview of the Minion architecture or feature set.

2.2. Container

This section details the customizations we make to the standard Karaf distribution for the Minion
container.

2.2.1. Clean Start

We clear the cache on every start by setting karaf.clean.cache = true in order to ensure that only
the features listed in the featuresBoot (or installed by the karaf-extender) are installed.

2.2.2. Karaf Extender

The Karaf Extender was developed to make it easier to manage and extend the container using
existing packaging tools. It allows packages to register Maven Repositories , Karaf Feature
Repositories and Karaf Features to Boot by overlaying additional files, avoiding modifying any of
the existing files.

HereOs an overview, used for reference, of the relevant directories that are (currently) present on a
default install of the opennms-minionpackage:

I"" etc

#EE $" featuresBoot.d
#EE EE $" custom.boot
I"" repositories

#EE I'"" local

#EE 1" core

#EE #EE I"" features.uris
#EE # $" features.boot
#EE $" default

#EE EE I" features.uris
#EE $" features.boot
$" system

When the karaf-extender feature is installed it will:
1. Find all of the folders listed under $karaf.home/repositories that do not start with a '.' and sort
these by name.
2. Gather the list of Karaf Feature Repository URIs from the features.uris files in the repositories.

3. Gather the list of Karaf Feature Names from the features.boot files in the repositories.

4. Gather the list of Karaf Feature Names form the files under $karaf.etc/featuresBoot.d that do
not start with a '.' and sort these by name.

5. Register the Maven Repositories by updating the org.ops4j.pax.url.mvn.repositories key for the
PID org.ops4j.pax.url.mvn

6. Wait up to 30 seconds until all of the Karaf Feature URIs are resolvable (the Maven Repositiries
may take a few moments to update after updating the configuration.)

7. Install the Karaf Feature Repository URIs.

8. Install the Karaf Features.

Features listed in the features.boot files of the Maven Repositiries will take
precedence over those listed in featuresBoot.d .

n Any existing repository registered in org.ops4j.pax.url.mvn.repositories will be
overwritten.

2.3. Packaging

This sections describes packages for Minion features and helps developers add new features to
these packages.

We currently provide two different feature packages for Minion :

openns-minion-features-core

Core utilities and services required for connectivity with the OpenNMS controller

openns-minion-features-default

Minion-specific service extensions

Every package bundles all of the Karaf Feature Files and Maven Dependencies into a Maven
Repository with additional meta-data used by the KarafExtender.

2.3.1. Adding a new feature to the default feature package

1. Add the feature definition to container/features/src/main/resources/features-minion.xml

2. Add the feature name in the features list configuration for the features-maven-plugin in
features/minion/repository/pom.xml

3. Optionally add the feature name to
features/minion/repository/src/main/resources/features.boot if the feature should be
automatically installed when the container is started.

2.4. Guidelines

This sections describes a series of guidelines and best practices when developing Minion modules:

2.4.1. Security

1. DonOt store any credentials on disk, use the SecureCredentialVault instead.

2.5. Testing

This sections describes how developers can test features on the Minion container.

2.5.1. Local Testing

You can compile, assemble, and spawn an interactive shell on the Minion container using:

Assemble and run the container in place

cd features/minion && ./runinPlace.sh

2.5.2. System Tests

The runtime environment of the Minion container and features differs greatly from those provided
by the unit and integration tests. For this reason, it is important to perform automated end-to-end
testing of the features.

The system tests provide a framework which allows developers to instantiate a complete Docker-
based Minion system using a single JUnit rule.

For further details, see the minion-system-tests project on Github.

https://github.com/OpenNMS/minion-system-tests

Chapter 3. Topology

3.1. Info Panel Items

This section is under development. All provided examples or code snippet may
not fully work. However they are conceptionally correct and should point in the
right direction.

Each element in the Info Panel is defined by an InfoPanelltem object.

All available InfoPanelltem objects are sorted by the order. This allows to arrange the items in a
custom order. After the elements are ordered, they are put below the SearchBox and the Vertices in
Focus list.

3.1.1. Programmatic

It is possible to add items to the Info Panel in the Topology Ul by simply implementing the interface
InfoPanelltemProvider and expose its implementation via OSGi.

Simple Java InfoPanelltemProvider

public class ExamplelnfoPanelltemProvider implements InfoPanelltemProvider {
E
E public Collection <? extends InfoPanelltem > getContributions (GraphContainer
container) {
return Collections . singleton (
new DefaultinfoPanelltem () %

. withTitle ("Static information ") &

. withOrder (0) *

. withComponent

new comvaadin. ui. Label("| am a static component ") (

S [T> [T > [T e mp me mp mp

% The default implementation of InfoPanelltem . You may use InfoPanelltem instead if the default
implementation is not sufficient.
& The title of the InfoPanelltem . It is shown above the component.

The order.
(- A Vaadin component which actually describes the custom component.
In order to show information based on a selected vertex or edge, one must inherit the classes

EdgelnfoPanelltemProvider or VertexinfoPanelltemProvider . The following example shows a custom
EdgelnfoPanelltemProvider .

Simple Java EdgelnfoPanelltemProvider

public class ExampleEdgelnfoPanelltemProvider extends EdgelnfoPanelltemProvider {
E
E protected boolean contributeTo (EdgeRefref , GraphContainer graphContainer) { %

E return "custom-namespack equals(ref . getNamespadg); // only show if of
certain namespace

E }

E

E protected InfoPanelltem createlnfoPanelltem (EdgeRefref, GraphContainer
graphContainer) { &

E return new DefaultinfoPanelltem ()

E .withTitle (ref . getLabel() + " Info ")

E . withOrder (0)

E . withComponent

E new comvaadin. ui. Label("Id: " + ref.getld () + ", Namespace: "
+ ref . getNamespadg)

E)i

E }

}

% lIs invoked if one and only one edge is selected. It determines if the current edge should provide
the InfoPanelltem created by createlnfoPanelltem .

& Is invoked if one and only one edge is selected. It creates the InfoPanelltem to show for the

selected edge.

Implementing the provided interfaces/classes, is not enough to have it show up. It must also be
exposed via a blueprint.xml to the OSGi service registry. The following blueprint.xml snippet
describes how to expose any custom InfoPanelltemProvider implementation to the OSGi service
registry and have the Topology Ul pick it up.

blueprint.xml snippet

<service interface ="org.opennms.features.topology.api.info.InfoPanelltemProvider "> %
E <bean class =' ExamplelnfoPanelltemProvider" /> &
</service>

% The service definition must always point to InfoPanelltemProvider .

& The bean implementing the defined interface.

3.1.2. Scriptable

By simply dropping JinJava templates (with file extension .html) to $OPENNMS_HOME/etc/infopaiael
more scriptable approach is available. For more information on JinJava refer to
https://github.com/HubSpot/jinjava

The following example describes a very simple JinJava template which is always visible.

https://github.com/HubSpot/jinjava

Static scriptable template

{% set visible = true %} %
{% set title = "Static information" %} &
{% set order = -700 %}

This information is always visible (

% Makes this always visible

& Defines the title

Each info panel item is ordered at the end. Making it -700 makes it very likely to pin this to the
top of the info panel item.

A template showing custom information may look as following:

Vertex specific template

{% set visible = vertex != null &% vertex.namespace == "custom" &&
vertex.customProperty is defined %} %
{% set title = "Custom Information™ %}

<table width="100% border="0">

E <tr>

E <td colspan="3">This information is only visible if a vertex with namespace
"custom” is selected </td>

E </tr>

E <tr>

E <td align ="right " width ="80">Custom Property</td>

E <td width="14"></td>

E <td align ="left ">{{ vertex.customProperty }} </td>

E <ftr>

</table>

% This template is only shown if a vertex is selected and the selected nhamespace is "custom"”.
It is also possible to show performance data.

Including resource graphs

One can include resource graphs into the info panel by using the following HTML element:

<div class ="graph-container " data-resource-id ="RESOURCE!' |IBata-graph-name=
"GRAPH_NARHEdiv>

Optional attributes data-graph-start and data-graph-end can be used to specify the displayed time
range in seconds since epoch.

Measurements API template (memory usage)

10

{# Example template for a simple memory statistic provided by the netsnmp agent #}
{% set visible = node != null &% node.sysObjectld ==".1.3.6.1.4.1.8072.3.2.10" %}
{% set order = 110 %}

{# Setting the title #}
{% set title = "System Memaory" %}

{# Define resource Id to be used #}
{% set resourceld = "node[" + node.id + "].nodeSnmp[]" %}

{# Define attribute Id to be used #}
{% set attributeld = "hrSystemUptime" %}

{% set total = measurements.getLastValue(resourceld, "memTotalReal")/1000/1024 %]}
{% set avail = measurements.getLastValue(resourceld, "memAvailReal")/1000/1024 %}

<table border="0" width="100%>
E <tr>
<td width="80" align ="right " valign ="top" >Total </td>
<td width="14"></td>
<td align ="left " valign ="top" colspan="2">
{{ total|round(2) }} GB(s)
</td>
</tr>
<tr>
<td width="80" align ="right " valign ="top">Used/td>
<td width="14"></td>
<td align ="left " valign ="top" colspan="2">
{{ (total-avail)[round(2) }} GB(s)
</td>
</tr>
<tr>
<td width="80" align ="right " valign ="top">Available </td>
<td width="14"></td>
<td align ="left " valign ="top" colspan="2">
{{ availlround(2) }} GB(s)
</td>
</tr>
<tr>
<td width="80" align ="right " valign ="top">Usage/td>
<td width="14"></td>
<td align ="left " valign ="top">

> > e [T e me T > e e e me me m e me e me me me m me> me e e m

<meter style ="width:100% min="0" max"{{total}} " low="{{0.5*otal }} !
high="{{ 0.8*total }} " value="{{ total-avail }} " optimun¥"'0"/>
E </td>
E <td width="1">
E {{ ((total-avail)/total*100)|round(2) }}%
E </td>
E <r>
</table>

Measurements API template (uptime)

{# Example template for the system uptime provided by the netsnmp agent #}
{% set visible = node != null &% node.sysObjectld ==".1.3.6.1.4.1.8072.3.2.10" %}
{% set order = 100 %}

{# Setting the title #}
{% set title = "System Uptime" %}

{# Define resource Id to be used #}
{% set resourceld = "node[" + node.id + "].nodeSnmp[]" %}

{# Define attribute Id to be used #}
{% set attributeld = "hrSystemUptime" %]}

<table border="0" width="100%>

E <tr>

E <td width="80" align ="right " valign ="top">getLastValue() </td>
E <td width ="14"></td>

E <td align ="left " valign ="top">

E {# Querying the last value via the getLastValue() method: #}

E {% set last = measurements.getLastValue(resourceld,

attributeld)/100.0/60.0/60.0/24.0 %}

E {{ last|round(2) }} day(s)

E </td>

E </tr>

E <t

E <td width="80" align ="right " valign ="top">query() </td>

E <td width="14"></td>

E <td align ="left " valign ="top">

E {# Querying the last value via the query() method. A custom function
‘currentTimeMillis()' in

E the namespace 'System' is used to get the timestamps for the query: #}
E {% set end = System:currentTimeMillis() %}

E {% set start = end - (15 * 60 * 1000) %}

E {% set values = measurements.query(resourceld, attributeld, start, end,

300000, "AVERAGE") %}

E {# Iterating over the values in reverse order and grab the first value
which is not NaN #}

E {% set last = "NaN" %}

E {% for value in values|reverse %}

E {%- if value != "NaN" && last == "NaN" %}
E {{ (value/100.0/60.0/60.0/24.0)|round(2) }} day(s)
E {% set last = value %}

E {% endif %}

E {%- endfor %}

E </td>

11

E <ftr>

E <t

E <td width="80" align ="right " valign ="top" >Graph</td>

E <td width="14"></td>

E <td align ="left " valign ="top">

E {# We use the start and end variable here to construct the graph's Url: #}
E <img src ="/opennms/graph/graph.png?resourceld=node[{{ node.id

}1.nodeSnmpl] &eport=netsnmp.hrSystemUptimeSstart={{ start }} &end={{end }} &
width=1708&8height=30"/>

E </td>

E </tr>

</table>

3.2. GraphML

In OpenNMS Horizon the GraphMLTopoloyProvidemuses GraphML formatted files to visualize graphs.

GraphML is a comprehensive and easy-to-use file format for graphs. It
consists of a language core to describe the structural properties of a graph
and a flexible extension mechanism to add application-specific data. [E]
Unlike many other file formats for graphs, GraphML does not use a custom
syntax. Instead, it is based on XML and hence ideally suited as a common
denominator for all kinds of services generating, archiving, or processing
graphs.

N http://graphml.graphdrawing.org
OpenNMS Horizon does not support the full feature set of GraphML. The following features are not

supported: Nested graphs, Hyperedges, Ports and Extensions. For more information about
GraphML refer to the Official Documentation

A basic graph definition using GraphML usually consists of the following GraphML elements:

¥ Graph element to describe the graph

¥ Key elements to define custom properties, each element in the GraphML document can define
as data elements

¥ Node and Edge elements

¥ Data elements to define custom properties, which OpenNMS Horizon will then interpret.

A very minimalistic example is given below:

12

http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/primer/graphml-primer.html

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmins="http://graphml.graphdrawing.org/xmins

E xmlins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance"

E xsi:schemalocation ="http://graphml.graphdrawing.org/xmins

E http://graphml.graphdrawing.org/xmins/1.0/graphml.xsd ">

E <!-- key section -->

E <keyid="label " for ="all " attr.name ="label " attr.type ="string "></key>
E <key id ='namespack for ='graph" attr.name ='namespack attr.type ="string "></key>
E <!-- shows up in the menu -->

E <data key="label ">Minimalistic GraphML Topology Provider </data> %

E <graph id ='minicmalistic "> &

E <data key="namespace>minimalistic </data> '

E <nodeid ='nodel' /> (

E <node id =" node2 />

E <node id ="node3 />

E <node id ="node4 />

E </graph>

</graphml>

% The optional label of the menu entry.
& The graph definition.
Each graph must have a namespace, otherwise OpenNMS Horizon refuses to load the graph.

(" Node definitions.

3.2.1. Create/Update/Delete GraphML Topology

In order to create a GraphML Topology, a valid GraphML xml file must exist. Afterwards this is send
to the OpenNMS Horizon REST API to create it:

curl -X POST -H "Content-Type: application/xml" -u admin:admin -d@graph.xml
'http://localhost:8980/opennms/rest/graphml/topology-name’

The topology-name is a unique identifier for the Topology. If a label property is defined for the
Graphml element this is used to be displayed in the Topology Ul, otherwise the topology-name
defined here is used as a fallback.

To delete an already existing Topology a HTTP DELETE request must be send:

curl -X DELETE -u admin:admin 'http://localhost:8980/opennms/rest/graphml/topology-
name'

There is no PUT method available. In order to update an existing GraphML Topology one must first
delete and afterwards re-create it.

13

Even if the HTTP Request was successful, it does not mean, that the Topology is
actually loaded properly. The HTTP Request states that the Graph was
successfully received, persisted and is in a valid GraphML format. However, the
underlying GraphMLTopologyProvider may perform additional checks or
encounters problems while parsing the file. If the Topology does not show up, the
karaf.log should be checked for any clues what went wrong. In addition it may
take a while before the Topology is actually selectable from the Topology UI.

3.2.2. Supported Attributes

A various set of GraphML attributes are supported and interpreted by OpenNMS Horizon while
reading the GraphML file. The following table explains the supported attributes and for which
GraphML elements they may be used.

The type of the GraphML-Attribute can be either boolean, int, long, float,
double, or string. These types are defined like the corresponding types in
the Java?-Programming language.

N http:/graphml.graphdrawing.org/primer/graphml-primer.html#Attributes

Table 1. Supported GraphML Attributes

Property

namespace

description

preferred-
layout

focus-
strategy

focus-ids

semantic-
zoom-level

vertex-
status-
provider

iconKey

14

Requ For Typ Defa Description
ired elemen e ult
t

yes Graph stri - The namespace must be unique overall existing
ng Topologies.

no Graph stri - A description, which is shown in the Info Panel.

ng

no Graph stri D3 Defines a preferred layout.
ng

no Graph stri FIRS Defines a focus strategy. See Focus Strategies for more
g U information.

no Graph stri - Refers to nodes ids in the graph.

ng This is required if focus-strategy is SPECIFIC
If multiple ids should be add to focus, they are
separated by , .
Example: nodel,node2

no Graph int 1 Defines the default SZL.

no Graph stri - Defines which Vertex Status Provider should be used,
ng e.g.default , script or propagate

no Node sStri gene Defines the icon. See Icons for more information.
ng ric

Property

label

nodelD

foreignSource

foreignID

tooltipText

level

edge-path-
offset

breadcrumb-
strategy

Requ For
ired elemen
t
no Graph,
Node
no Node
no Node
no Node
no Node,
Edge
no Node
no Graph,
Node
no Graph
ML

3.2.3. Focus Strategies

Typ

stri

int

stri
ng

stri
ng

stri
ng

int

int

stri
ng

Defa
ult

20

Description

Defines a custom label. If not defined, the id is used
instead.

Allows referencing the Vertex to an OpenNMS node.

Allows referencing the Vertex to an OpenNMS node
identified by foreign source and foreign id.

Can only be used in combination with ~ foreignID . Please
note that this attribute will not be

used when the attribute nodelDis set.

Allows referencing the Vertex to an OpenNMS node
identified by foreign source and foreign id.

Can only be used in combination with ~ foreignSource .
Please note that this attribute will not be

used when the attribute nodelDis set.

Defines a custom tooltip. If not defined, the id attribute
is used instead.

Sets the level of the Vertex which is used by certain
layout algorithms i.e. Hierarchical Layout and Grid
Layout.

Controls the spacing between the paths drawn for the
edges when there are multiple edges connecting two
vertices.

NONE Defines the breadcrumb strategy to use. See

Breadcrumbs for more information.

A Focus Strategy defines which Vertices should be added to focus when selecting the Topology. The

following strategies are available:

¥ EMPTY No Vertex is add to focus.

¥ ALL All Vertices are add to focus.

¥ FIRST The first Vertex is add to focus.

¥ SPECIFIC Only Vertices which id match the graphOs property ~ focus-ids are added to focus.

3.2.4. Icons

With the GraphMLTopoloygProvider it is not possible to change the icon from the Topology UL.
Instead if a custom icon should be used, each node must contain a iconKey property referencing an
SVG element.

15

3.2.5. Vertex Status Provider

The Vertex Status Provider calculates the status of the Vertex. There are multiple implementations
available which can be configured for each graph: default , script and propagate. If none is
specified, there is no status provided at all.

Default Vertex Status Provider

The default status provider calculates the status based on the worst unacknowledged alarm
associated with the VertexOs node. In order to have a status calculated a (OpenNMS Horizon) node
must be associated with the Vertex. This can be achieved by setting the GraphML attribute nodelD
on the GraphML node accordingly.

Script Vertex Status Provider

The script status provider uses scripts similar to the Edge Status Provider . Just place Groovy scripts
(with file extension .groovy) in the directory $OPENNMS_HOME/etc/graphml-vertex-statugll of the
scripts will be evaluated and the most severe status will be used for the vertex in the topologyOs
visualization.

If the script shouldnOt contribute any status to a vertex just return null .

Propagate Vertex Status Provider

The propagate status provider follows all links from a node to its connected nodes. It uses the status
of these nodes to calculate the status by determining the worst one.

3.2.6. Edge Status Provider

It is also possible to compute a status for each edge in a given graph. Just place Groovy scripts (with
file extension .groovy) in the directory $OPENNMS_HOME/etc/graphml-edge-statéll of the scripts will
be evaluated and the most severe status will be used for the edge in the topologyOs visualization.

The following simple Groovy script example will apply a different style and severity if the edgeOs
associated source node is down.

Scriptable edge status

import org.opennms.netmgt.model.OnmsSeverity,
import org.opennms.features.topology.plugins.topo.graphml.GraphMLEdgeStatus ;

if (sourceNode!= null &&sourceNodeisDowr()) {

E return new GraphMLEdgeStaty©nmsSeverity WARNING ' stroke-dasharray ' : '5,5',
"stroke ' : 'yellow', 'stroke-width ' : '6]);
} else {
E return new GraphMLEdgeStat§©nmsSeverity NORMAL]) :
}
If the script shouldnOt contribute any status to an edge just return null .

16

3.2.7. Layers

The GraphMLTopologyProvider can handle GraphML files with multiple graphs. Each Graph is
represented as a Layer in the Topology Ul. If a vertex from one graph has an edge pointing to
another graph, one can navigate to that layer.

GraphML example defining multiple layers

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmIns="http://graphml.graphdrawing.org/xmins
xmlins:xsi ="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation =" http://graphml.graphdrawing.org/xmins
http://graphml.graphdrawing.org/xmins/1.0/graphml.xsd ">
<l-- Key section -->
<key id ="label " for ="graphml' attr.name ="label " attr.type ="string "></key>
<key id ="label " for ="graph" attr.name ="label " attr.type ="string "></key>
<key id ="label " for ="node" attr.name ="label " attr.type ="string "></key>
<key id ="description " for ="'graph" attr.name ="description " attr.type ="string "
></key>
E <key id ="namespace for ="graph" attr.name ="namespace attr.type ="string "></key>
E <key id =" preferred-layout " for ='graph" attr.name ='preferred-layout " attr.type =
"string "></key>
E <key id ='focus-strategy
" ></key>
E <key id ="focus-ids " for ="graph" attr.name ="focus-ids " attr.type ='"string "></key>
E <key id ="semantic-zoom-level " for ="graph" attr.name ='semantic-zoom-level "
attr.type ="int "/>

[T T e Ty me mp mp mp

for ="graph" attr.name ="focus-strategy " attr.type ="string

<!I-- Label for Topology Selection menu -->
<data key="label ">Layer Example</data>
<graph id ="regions " >
<data key="namespac&>acme:regions</data>
<data key="label ">Regions</data>
<data key="description ">The Regions Layer. </data>
<data key="preferred-layout ">Circle Layout </data>
<data key="focus-strategy ">ALl</data>
<nodeid ="north " >
<data key="label ">North</data>
</node>
<node id ="west" >
<data key="label ">Wesk/data>
</node>
<node id ="south" >
<data key="label ">South</data>
</node>
<nodeid ="east">
<data key="label ">East</data>
</node>
</graph>
<graph id =" markets" >
<data key="namespack>acme:markets/data>

> e e > e me My e me T T me T T me T T e T T M [T [T

17

[T M M T T M T T M T T M T T M T T M T T M T T M T T M T T M T T T T T T T T T T T T T T T T T T T [T TP

<data key="description ">The Markets Layer. </data>
<data key="label ">Markets</data>
<data key="description ">The Markets Layer </data>
<data key="semantic-zoom-level ">1</data>
<data key="focus-strategy ">SPECIFI€/data>
<data key="focus-ids ">north.2 </data>
<node id ='north.1 ">

<data key="label ">North 1 </data>
</node>
<nodeid ="north.2 ">

<data key="label ">North 2 </data>
</node>
<nodeid ="north.3 ">

<data key="label ">North 3 </data>
</node>
<nodeid ="north.4 ">

<data key="label ">North 4 </data>
</node>
<node id ="west.1" >

<data key="label ">West 1</data>
</node>
<nodeid ="west.2" >

<data key="label ">West 2</data>
</node>
<nodeid ="west.3" >

<data key="label ">West 3</data>
</node>
<nodeid ="west.4" >

<data key="label ">West 4</data>
</node>
<node id ='south.1 ">

<data key="label ">South 1</data>
</node>
<node id ="south.2 ">

<data key="label ">South 2</data>
</node>
<nodeid ='south.3" >

<data key="label ">South 3</data>
</node>
<nodeid ='south.4 " >

<data key="label ">South 4</data>
</node>
<node id ="east.1 ">

<data key="label ">East 1 </data>
</node>
<node id ="east.2 ">

<data key="label ">East 2 </data>
</node>
<nodeid ="east.3 ">

<data key="label ">East 3 </data>
</node>

E <node id ="east.4 ">

E <data key="label ">East 4 </data>

E </node>

E <l-- Edges in this layer -->

E <edgeid ="north.1_north.2 " source="north.1 " target ="north.2 "/>
E <edgeid ="north.2_north.3 " source="north.2 " target ="north.3 "/>
E <edgeid ="north.3_north.4 " source="north.3 " target ="north.4 "/>
E <edgeid ="east.1_east.2 " source="east.1" target ="east.2"/>

E <edgeid ="east.2_east.3 " source="east.2" target ="east.3"/>

E <edgeid ='east.3_east.4 " source="east.3" target ='east.4"/>

E <edgeid ="south.1_south.2 " source="south.1" target ="south.2"/>
E <edgeid ="south.2_south.3 " source="south.2" target ="south.3"/>
E <edgeid ="south.3_south.4 " source="south.3" target ="south.4"/>
E <edgeid ='north.1_north.2 " source="north.1 " target ="north.2 "/>
E <edge id ="north.2_north.3 " source="north.2 " target ="north.3 "/>
E <edgeid ="north.3_north.4 " source="north.3 " target ="north.4 "/>
E <l-- Edges to different layers -->

E <edgeid ="west_north.1 " source="north" target ="north.1 "/>

E <edgeid ="north_north.2 " source="north" target ="north.2 "/>

E <edgeid ="north_north.3 " source="north" target ="north.3 "/>

E <edgeid ="north_north.4 " source="north" target ="north.4 "/>

E <edgeid ="south_south.1" source="south" target ="'south.1"/>

E <edgeid ="south_south.2" source="south" target ="south.2"/>

E <edgeid ="south_south.3" source="south" target ="south.3"/>

E <edge id ="south_south.4" source="south" target ="south.4"/>

E <edgeid ="east_east.1 " source="east" target ="east.1"/>

E <edgeid ="east east.2 " source="east" target ="east.2"/>

E <edgeid ='east_east.3 " source="east" target ='east.3"/>

E <edgeid ="east_east.4 " source="east" target ="east.4"/>

E <edge id ="west_west.1" source="west" target ="west.1"/>

E <edgeid ="west_west.2" source="west" target ="west.2"/>

E <edgeid ="west_west.3" source="west" target ='west.3"/>

E <edgeid ="west_west.4" source="west" target ="west.4"/>

E </graph>

</graphml>

3.2.8. Breadcrumbs

When multiple Layers are used it is possible to navigate between them (
vertex' context menu). To give the user some orientation breadcrumbs can be enabled with the

breadcrumb-strategy property.
The following strategies are supported:

¥ NONE No breadcrumbs are shown.

navigate to option from

¥ SHORTEST_PATH_TO_ROOT generates breadcrumbs from all visible vertices to the root layer
(TopologyProvider). The algorithms assumes a hierarchical graph. Be aware, that all vertices
MUST share the same root layer, otherwise the algorithm to determine the path to root does not

work.

19

The following figure visualizes a graphml defining multiple layers (see below for the graphml
definition).

Directed Dummy-Root to Default-Layer edge ———— 3=

Directed Layer connection. Result of getOpposites(VertexRef) ———»

GraphProvider (Layer) D

Standard (undirected) Edge in Layer
/’ \\
F ., Vertex O
e iy

// \\
; ’I ‘\.\\
I/ \\

Layerl 5 e Ty

(Defau E 4 I

Layer?2

E1l B2 B3 @
Layer3 L 4 Y
@ ©

From the given example, the user can select the Breadcrumb ExampleTopology Provider from the
menu. The user can switch between Layer 1, Layer 2 and Layer 3. In addition for each vertex which

has connections to another layer, the user can select the navigate to option from the context menu
of that vertex to navigate to the according layer. The user can also search for all vertices and add it

to focus.

The following behaviour is implemented:

¥ If a user navigates from one vertex to a vertex in another layer, the view is switched to that
layer and adds all vertices to focus, the source vertex pointed to. The Breadcrumb is <parent
layer name> > <source vertex> . For example, if a user navigates from Layer1l:A2 to Layer2:B1 the
view switches to Layer 2 and adds Bl and B2to focus. In addition Layer 1 > A2 is shown as
Breadcrumbs.

¥ If a user directly switches to another layer, the default focus strategy is applied, which may
result in multiple vertices with no unique parent. The calculated breadcrumb is: <parent layer
name> > Multiple <target layer name> . For example, if a user switches to Layer 3, all vertices of
that layer are added to focus (focus-strategy=ALL). No unique path to root is found, the following
breadcrumb is shown instead: Layer 1 > Multiple Layer 1 > Multiple Layer 2

20

¥ If a user adds a vertex to focus, which is not in the current selected layer, the view switches to
that layer and only the "new" vertex is added to focus. The generated breadcrumb shows the
path to root through all layers. For example, the user adds C3to focus, and the current layer is
Layer 1, than the generated breadcrumb is as follows: Layer 1 >Al1>B3 .

¥ Only elements between layers are shown in the breadcrumb. Connections on the same layer are

ignored. For example, a user adds C5to focus, the generated breadcrumb is as follows: Layer 1 >
A2 > B2

The following graphml file defines the above shown graph. Be aware, that the root vertex shown
above is generated to help calculating the path to root. It must not be defined in the graphml
document.

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmIns="http://graphml.graphdrawing.org/xmins
xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation ="http://graphml.graphdrawing.org/xmins
http://graphml.graphdrawing.org/xmins/1.0/graphml.xsd ">

<key id ="breadcrumb-strategy " for ="graphml' attr.name ="breadcrumb-strategy "
attr.type ="string "></key>
E <keyid="label " for ="all " attr.name ="label " attr.type ="string "></key>
E <key id ="description " for ="graph" attr.name ="description " attr.type ='string "
></key>
E <key id ="namespace for ="graph" attr.name ="namespace attr.type ="string "></key>
E <key id ="focus-strategy " for ="graph” attr.name ='focus-strategy " attr.type ="string
" ></key>
E <key id ="focus-ids " for ='graph” attr.name ="focus-ids " attr.type ='string "></key>
E <key id =" preferred-layout " for ="graph" attr.name ="preferred-layout " attr.type =
"string "></key>
E <key id ='semantic-zoom-level " for ="graph" attr.name ='semantic-zoom-level "
attr.type ="int "/>
<data key="label ">Breadcrumb Example/data>
<data key="breadcrumb-strategy ">SHORTEST_PATH_TO<RK&a¥
<graph id ="L1">

<data key="label ">Layer 1 </data>

<data key="namespace&>acme:layerl</data>

<data key="focus-strategy ">ALl</data>

<data key="preferred-layout ">Circle Layout </data>

<nodeid ="al'>

<data key="label ">Al/data>
</node>
<nodeid ="a2'>
<data key="label ">AX/data>

</node>

<edgeid ="al_b3 source="al" target ='b3'/>

<edgeid ='al b4 source="al' target ='b4"'/>

<edgeid="a2 bl source="a2' target ="bl'/>

<edgeid ="a2_b2 source="a2' target ="b2'/>
</graph>
<graph id ="L2'>

<data key="label ">Layer 2 </data>

[T T mp Th

T > mp > me e mp Ty e mp Ty e o Ty me M Ty me T [T

21

<data key="focus-strategy ">ALl</data>
<data key="namespace>acme:layer2</data>
<data key="preferred-layout ">Circle Layout </data>
<data key="semantic-zoom-level ">0</data>
<node id ="b1">
<data key="label ">Bl</data>
</node>
<node id ="b2'>
<data key="label ">BX/data>
</node>
<node id ='b3'>
<data key="label ">B3</data>
</node>
<nodeid ="b4">
<data key="label ">B4/data>
</node>
<edgeid ="bl_c2' source="b1l" target ='c2"/>
<edgeid ='b2_cl' source="b2' target ='cl"/>
<edgeid="b3 c3 source="b3"' target ="c3"/>
</graph>
<graph id ="Layer 3" >
<data key="label ">Layer 3 </data>
<data key="focus-strategy ">ALl</data>
<data key="description ">Layer 3 </data>
<data key="namespact>acme:layer3</data>
<data key="preferred-layout ">Grid Layout </data>
<data key="semantic-zoom-level ">1</data>
<node id ="c1">
<data key="label ">CXk/data>
</node>
<nodeid ="c2">
<data key="label ">CX/data>
</node>
<nodeid ="c3">
<data key="label ">C3</data>
</node>
<node id ="c4">
<data key="label ">C&/data>
</node>
<node id ='c5">
<data key="label ">C5/data>
</node>
<nodeid ="c6">
<data key="label ">Cé6</data>
</node>
<edgeid ="cl_c4' source="cl" target ='c4"/>
<edgeid ="cl c5' source="cl" target ='c5"/>
<edgeid ='c4_c5' source="c4" target ='c5"/>
</graph>
</graphml>

> > M M T T T T T M T T e T T M T T M T T M T T M T T M T T M T T T T T T T T T T T T T T T M T TP

22

Chapter 4. CORS Support

4.1. Why do | need CORS support?

By default, many browsers implement a same origin policy which prevents making requests to a
resource, on an origin thatOs different from the source origin.

For example, a request originating from a page served from http://www.opennms.org to a resource
on http://www.adventuresinoss.com would be considered a cross origin request.

CORS (Cross Origin Resource Sharing) is a standard mechanism used to enable cross origin
requests.

For further details, see:

¥ MozillaOs HTTP access control (CORS)

¥ W3COs CORS Spec

4.2. How can | enable CORS support?

CORS support for the REST interface (or any other part of the Web Ul) can be enabled as follows:

1. Open '$OPENNMS_HOME/jetty-webapps/opennms/WEB-INF/web.xml' for editing.

2. Apply the CORS filter to the ‘/rest/' path by removing the comments around the <filter-
mapping> definition. The result should look like:

E <!I-- Uncomment this to enable CORS support -->
E <filter-mapping>

E <filter-name> CORS Filter</filter-name>

E <url-pattern> /rest/* </url-pattern>

E </filter-mapping>

3. Restart OpenNMS Horizon

4.3. How can | configure CORS support?
CORS support is provided by the org.ebaysf.web.cors.CORSFilter servlet filter.

Parameters can be configured by modifying the filter definition in the ‘web.xml' file referenced
above.

By default, the allowed origins parameter is set to "*'.
The complete list of parameters supported are available from:

¥ https://github.com/ebay/cors-filter

23

http://www.opennms.org
http://www.adventuresinoss.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
http://www.w3.org/TR/cors/
https://github.com/ebay/cors-filter

Chapter 5. ReST API

A RESTTful interface is a web service conforming to the REST architectural style as described in the
book RESTful Web Services . This page is describes the RESTful interface for OpenNMS Horizon.

5.1. ReST URL

The base URL for Rest Calls is: http://opennmsserver:8980/opennms/rest/

For instance, http://localhost:8980/opennms/rest/alarms/ will give you the current alarms in the
system.

5.2. Authentication

Use HTTP Basic authentication to provide a valid username and password. By default you will not
receive a challenge, so you must configure your ReST client library to send basic authentication
proactively.

5.3. Data format

Jersey allows ReST calls to be made using either XML or JSON. By default a request to the API is
returned in XML. XML is delivered without namespaces. Please note: If a namespace is added
manually in order to use a XML tool to validate against the XSD (like xmllint) it wonOt be preserved
when OpenNMS updates that file. The same applies to comments. To get JSON encoded responses
one has to send the following header with the request: Accept: application/json

5.4. Standard Parameters

The following are standard params which are available on most resources (noted below)

Table 2. ReST standard parameter for resources

Param Description
eter

limit integer, limiting the number of results. This is particularly handy on events and
notifications, where an accidental call with no limit could result in many thousands of
results being returned, killing either the client or the server. If set to 0, then no limit
applied

offset integer, being the numeric offset into the result set from which results should start being
returned. E.g., if there are 100 result entries, offset is 15, and limit is 10, then entries 15-24
will be returned. Used for pagination

Filtering : All properties of the entity being accessed can be specified as parameters in either the
URL (for GET) or the form value (for PUT and POST). If so, the value will be used to add a filter to
the result. By default, the operation is equality, unless the comparator parameter is sent, in which
case it applies to all comparisons in the filter. Multiple properties will result in an ANDbperation
between the filter elements. Available comparators are:

24

http://oreilly.com/catalog/9780596529260
http://opennmsserver:8980/opennms/rest/
http://localhost:8980/opennms/rest/alarms/

Param Description

eter

€q Checks for equality

ne Checks for non-equality

ilike Case-insensitive wildcarding (%is the wildcard)
like Case-sensitive wildcarding (%is the wildcard)
gt Greater than

It Less than

ge Greater than or equal

le Less than or equal

If the value null is passed for a given property, then the obvious operation will occur (comparator
will be ignored for that property). notnull is handled similarly.

¥ Ordering : If the parameter orderBy is specified, results will be ordered by the named property.
Default is ascending, unless the order parameter is set to desc (any other value will default to
ascending)

5.5. Standard filter examples

Take /events as an example.

Resource Description

levents?eventUei=uei.opennms.o would return the first 10 events with the rtc subscribe UEI, (10
rg/internalfric/subscribe being the default limit for events)

/events?eventUei=uei.opennms.o would return all the rtc subscribe events (potentially quite a few)
rg/internal/rtc/subscribe&limi

t=0
/events?id=100&comparator=gt \would return the first 10 events with an id greater than 100

levents?eventAckTime=notnull would return the first 10 events that have a non-null Ack time
(i.e. those that have been acknowledged)

levents?eventAckTime=notnull&i would return the first 20 events that have a non-null Ack time
d=100&comparator=gt&limit=20 and an id greater than 100. Note that the notnull value causes
the comparator to be ignored for eventAckTime

levents?eventAckTime=2008-07- would return the first 20 events that have were acknowledged

éig?nt;grl;c?r'fggﬁ’rﬁigéoO&'d:100after 28th July 2008 at 4:41am (+12:00), and an id greater than
100. Note that the same comparator applies to both property
comparisons. Also note that you must URL encode the plus sign
when using GET.

/events?orderBy=id&order=desc \would return the 10 latest events inserted (probably, unless
youOve been messing with the idOs)

25

Resource Description

/events?location.id=MINION would return the first 10 events associated with some node in
location 'MINION'

5.6. HTTP Return Codes

The following apply for OpenNMS Horizon 18 and newer.
¥ DELETE requests are going to return a 202 (ACCEPTED) if they are performed asynchronously
otherwise they return a 204 (NO_CONTENT) on success.
¥ All the PUT requests are going to return a 204 (NO_CONTENT) on success.

¥ All the POST requests that can either add or update an entity are going to return a 204
(NO_CONTENT) on success.

¥ All the POST associated to resource addition are going to return a 201 (CREATED) on success.
¥ All the POST requests where it is required to return an object will return a 200 (OK).

¥ All the requests excepts GET for the Requisitions end-point and the Foreign Sources Definitions
end-point will return 202 (ACCEPTED). This is because all the requests are actually executed
asynchronously and there is no way to know the status of the execution, or wait until the
processing is done.

¥ If a resource is not modified during a PUT request, a NOT_MODIFIED will be returned. A
NO_CONTENT will be returned only on a success operation.

¥ All GET requests are going to return 200 (OK) on success.

¥ All GET requests are going to return 404 (NOT_FOUND) when a single resource doesnOt exist; but
will return 400 (BAD_REQUEST), if an intermediate resource doesnOt exist. For example, if a
specific IP doesnOt exist on a valid node, return 404. But, if the IP is valid and the node is not
valid, because the node is an intermediate resource, a 400 will be returned.

¥ If something not expected is received from the Service/DAO Layer when processing any HTTP
request, like an exception, a 500 (INTERNAL_SERVER_ERROR) will be returned.

¥ Any problem related with the incoming parameters, like validations, will generate a 400
(BAD_REQUEST).

5.7. ldentifying Resources

Some endpoints deal in resources, which are identified by Resource IDs. Since every resource is
ultimately parented under some node, identifying the node which contains a resource is the first

step in constructing a resource ID. Two styles are available for identifying the node in a resource

ID:

Style Description Example

node[ID] Identifies a node by its database ID, node[42]
which is always an integer

26

Style Description Example

node[FS:FID] Identifies a node by its foreign-source node[Servers:115da833-0957-4471-b496-
name and foreign-ID, joined by a ar31928c27dd]
single colon

The node identifier is followed by a period, then a resource-type name and instance name. The
instance nameQs characteristics may vary from one resource-type to the next. A few examples:

Value Description

nodeSnmp]] Node-level (scalar) performance data for the node in question.
This type is the only one where the instance identifier is empty.

interfaceSnmpl[ethO- A layer-two interface as represented by a row in the SNMP
04013f751101] ifTable . The instance identifier is composed

of the interfaceOs ifNameand its ifPhysAddress (if it has one).

dskindex[_root_fs] The root filesystem of a node running the Net-SNMP
management agent.

Putting it all together, here are a few well-formed resource IDs:

¥ node[l].nodeSnmp]]
¥ node[42].interfaceSnmp[eth0-04013f75f101]
¥ node[Servers:115da833-0957-4471-b496-a731928c27dd].dskindex[_root_fs]

5.8. Currently Implemented Interfaces

5.8.1. Acknowledgements

| the default offset is 0, the default limit is 10 results. To get all results, use limit=0
. as a parameter on the URL (ie, GET /acks?limit=0).

GETSs (Reading Data)

Resource Description
lacks Get a list of acknowledgements.
/acks/count Get the number of acknowledgements. (Returns plaintext, rather

than XML or JSON)

/acks/id} Get the acknowledgement specified by the given ID.

POSTs (Setting Data)

27

